USPOREDBA I ODABIR PRIKLADNE METODE ZA DJELOTVORNU ANALIZU AUTOFAGIJE U STANIČNIM UZORCIMA

Diplomski rad

Osijek, 2019.
USPOREDBA I ODABIR PRIKLADNE
METODE ZA DJELOTVORNU
ANALIZU AUTOFAGIJE U
STANIČNIM UZORCIMA

Diplomski rad

Osijek, 2019.
Rad je ostvaren u Laboratoriju za kulturu tkiva pri Zavodu za medicinsku kemiju, biokemiju i laboratorijsku medicinu na Medicinskom fakultetu Osijek.

Mentor rada: doc. dr. sc. Teuta Opačak-Bernardi.

Rad ima 31 list i 11 slika.
Posebnu zahvalnost dugujem mentorici doc. dr. sc. Teuti Opakuć-Bernardi na iznimnoj strpljivosti, susretljivosti, razumijevanju i pomoći pri izradi ovog diplomskog rada.
Zahvaljujem i djelatnici Laboratorija za kulturu tkiva bacc. Ivani Jelavić na pomoći, susretljivosti i vedrom duhu kojim nas je uveseljava.

Najveću, pak, zahvalnost dugujem svojem ocu, kao i ostatku obitelji, na strpljenju i potpori tijekom čitavog školovanja. Ovaj rad posvećujem svom tati, kao krunu svojeg akademskog puta.
SADRŽAJ

1. UVOD .. 1
 1.1. Autofagija .. 2
 1.2. Vrste autofagije.. 3
 1.2.1. Mikroautofagija .. 3
 1.2.2. Šaperon-posredovana autofagija (CMA) 4
 1.2.3. Makroautofagija .. 5
 1.3. Osnovni mehanizam autofagije ... 6
 1.4. Boje za detekciju autofagnih vakuola ... 7
 1.4.1. Monodanzil kadaverin (MDC) ... 7
 1.4.2. Akradin narančanstvo (AO) .. 7
 1.4.3. Komercijalni set za detekciju autofagije ... 8

2. HIPOTEZA .. 9

3. CILJ RADA ... 10

4. MATERIJAL I METODE .. 11
 4.1. Materijal ... 11
 4.1.1. Pribor i kemikalije ... 11
 4.1.2. Stanična linija ... 11
 4.2. Metode .. 12
 4.2.1. Održavanje stanica u kulturi ... 12
 4.2.2. Određivanje broja stanica .. 12
 4.2.3. Nasadivanje stanica .. 13
 4.2.4. Priprema uzoraka za bojenje ... 14
 4.2.5. Bojenje uzoraka ... 14
 4.3. Statističke metode .. 15

5. REZULTATI .. 16
 5.1. Bojenje MDC-om .. 16
 5.2. Bojenje AO-om .. 19
 5.3. Bojenje ab139484 setom za detekciju autofagije 21

6. RASPRAVA ... 23
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>ZAKLJUČAK</td>
<td>26</td>
</tr>
<tr>
<td>8.</td>
<td>SAŽETAK</td>
<td>27</td>
</tr>
<tr>
<td>9.</td>
<td>SUMMARY</td>
<td>28</td>
</tr>
<tr>
<td>10.</td>
<td>LITERATURA</td>
<td>29</td>
</tr>
<tr>
<td>11.</td>
<td>ŽIVOTOPIS</td>
<td>31</td>
</tr>
</tbody>
</table>
POPIS KRATICA

AO – engl. *acridine orange* – akridin narančasto
ATG – engl. *autophagy-related* – geni ili proteini povezani s autofagijom
CMA – engl. *chaperone-mediated autophagy* – šaperon – posredovana autofagija
DNA – engl. *deoxyribonucleic acid* – deoksiribonukleinska kiselina
DMEM – engl. *Dulbecco's modified Eagle's medium* – medij u kulturi stanica
MDC – engl. *monodansylcadaverine* – monodanzil kadaverin, boja
NCCD – engl. *Nomenclature Committee on Cell Death* – Odbor za nomenklaturu stanične smrti
PAS – engl. *pre-autophagosomal structure* – pre-autofagosomalna struktura
PBS – engl. *phosphate-buffered saline* – fosfatom puferirana otopina soli
PCD – engl. *programmed cell death* – programirana stanična smrt
Ubl – engl. *ubiquitin-like* – poput ubikvitina („ubikvitin slično“)
ULK1/2 – engl. *Unc-51 like autophagy activating kinase*
1. UVOD

Sve stanice unutar živog organizma proliferiraju, diferenciraju se i u konačnici, odumiru. U fiziološkim uvjetima unutar živog organizma postoji ravnoteža između stanične obnove i stanične smrti. Stanična smrt može biti slučajna, uzrokovana vanjskim čimbenicima poput izloženosti stanica toksičnim supstancama, infektivnim agensima i trauma ma (nekroza), ili pomno regulirana molekularnim mehanizmima. Brojna su istraživanja pokazala povezanost između nepravilnosti u procesu stanične smrti i razvoja različitih bolesti (kar cinoma, autoimunih, neurodegenerativnih i drugih bolesti) (1).

Stanična smrt može se klasificirati prema morfološkim pojavnostima (apoptotična, nekrotična, autofagija ili povezana s mitozom), prema uključenosti enzima poput nuklea za ili proteaza, prema funkcionalnim aspektima (je li smrt programirana ili slučajna, patološka ili fiziološka) ili pak prema imunološkim karakteristikama. Ipak, tijekom povijesti zadržala se klasifikacija stanične smrti prema makroskopskim morfološkim promjenama na stanicama u 3 tipa: tip I stanične smrti ili apoptoza, tip II stanične smrti ili autofagija, te tip III stanične smrti ili nekroza (3). Tip I i tip II stanične smrti, apoptoza i autofagija, pripadaju reguliranoj ili programiranoj staničnoj smr ti (engl. programmed cell death – PCD). Programirana stanična smrt obrambeni je mehanizam uklanjanja oštećenih, inficiranih ili mutiranih stanica (1). Za razliku od PCD-a, nekroza, tip III stanične smrti, uzrokuje intenzivni upalni odgovor u organizmu i može imati ozbiljne posljedice za organizam u cjelini. Za nekrotičku smrt stanice nisu potrebne kaspaze, kao u PCD-u, pa se smatralo da je nekroza nefiziološki i nereguliran proces, suprotan PCD-u. Ipak, nedavnà istraživanja pokazala su da postoji i programirana forma nekrotičke stanične smrti – nekroptoza (4).
Slika 1. Vrste stanične smrti i njihova morfološka obilježja: a) zdrava stanica, b) nekrotična stanica, c) apoptotična stanica, d) autofagična stanica (prilagođeno prema prikazu iz reference 4)

U ovom radu najviše će biti govora o autofagiji kao neapoptotičkom, alternativnom putu programirane stanične smrti te njezinoj ulozi u održavanju homeostaze u organizmu u različitim patofiziološkim stanjima, pogotovo u karcinomu.

1.1. Autofagija

Autofagija je visoko konzervativan katabolički proces kojim se stanični materijal, organeli i proteini unose u vezikule (autofagosome) koji se zatim spajaju s lizosomima kako bi se degradirali. Autofagija pripada neapoptotičkom mehanizmu programirane stanične smrti. Najčešće se inducira pri nedostatku hranjivih tvari razgradnjom organela i staničnih proteina, koji se zatim ponovno upotrebljavaju kako bi se osigurala energija za esencijalne stanične funkcije. Autofagija može biti alternativa apoptozi kada je apoptoza spriječena (1, 5).

Termin „autofagija“ (grč. autóphagos; auto = sam + phagein = jesti) skovao je 60-ih godina prošloga stoljeća Christian de Duve, kada je pod elektronskim mikroskopom primijetio vezikule obavijene jednostrukom ili dvostrukom membranom koje sadrže dijelove citoplazme

Autofagija i vrste autofagije mogu biti selektivne ili neselektivne pri uklanjanju određenih organela, ribosoma ili proteina (7).

1.2. Vrste autofagije

1.2.1. Mikroautofagija

Mikroautofagija je najslabije istraživani tip autofagije u sisavaca. Zbog ograničenih sredstava i instrumenata dostupnih za djelotvornu analizu, njezina je fiziološka funkcija u organizmu sisavaca nepotpuno razjašnjena. Inducira se u nedostatku dušika ili rapamicinom pomoću kompleksnih signalnih puteva.
Mikroautofagija je neselektivan degradirajući proces kojim se citoplazmatski sadržaj unosi direktno u lizosom invaginacijom (uvrtanjem) ili deformacijom membrane lizosoma. Sudjeluje u održavanju veličine staničnih organela, homeostaze membrane i preživljavanju stanica u nedostatku dušika. Mikroautofagija kao proces visoko je koordinirana s makroautofagijom i CMA-om, dok se njezini selektivni podtipovi (mikropeksofagija, mikromitofagija) mogu odvijati istovremeno ili sinergistički s ostalim tipovima selektivne autofagije (8, 9).

1.2.2. Šaperon-posredovana autofagija (CMA)

Šaperon-posredovana autofagija visoko je specifična i dosad opisana samo u stanicama sisavaca. CMA je specifična za supstrat koji u sebi sadrži pentapeptidni KFERQ motiv. KFERQ motiv je slijed uvijek istih aminokiselina: lizina (K), jedne od četiri hidrofobne aminokiseline (primjerice, fenilalanina, valina, leucina – F), glutaminske ili asparaginske kiseline (E), arginina (R) koji je prisutan na početku ili na kraju motiva te glutaminskog ostatka (Q).

U ovoj vrsti autofagije ciljni proteini translociraju se preko membrane lizosoma u kompleksu sa šaperonima. Šaperoni su proteini koji pomažu svijanju polipeptidnog lanca proteina, pri čemu održavaju strukturu proteina u potrebnom obliku (najčešće u trodimenzionalnoj strukturi koja je potrebna kako bi protein mogao djelovati). Tijekom CMA-a, šaperoni (npr. HSC70/HSPA8, koji sudjeluje u smatanju i razgradnji proteina) prepoznaju proteine s KFERQ motivom. Kompleks šaperon-protein zatim prepoznaju receptori na membrani lizosoma. Ti receptori, pod nazivom lizosom-povezani membranski proteini 2 (engl. lysosome-associated membrane protein 2, LAMP2), kada se spoje s kompleksom šaperon – protein, doprinose njegovom odmatanju i razgradnji. CMA može razgraditi više tipova supstrata, od glikolitičkih enzima ili proteasomskih podjedinica, do transkripcijskih faktora i njihovih inhibitora (7, 8).
1.2.3. Makroautofagija

Makroautofagija je najistraživaniji proces autofagije u sisavaca. Pri spomenu autofagije i njezinih mehanizama u literaturi, misli se upravo na makroautofagiju. Otkriće gena povezanih s autofagijom, kao i Atg proteina, dovelo je do otkrića njihove uloge u mehanizmu autofagije.

Početak autofagije kontroliran je unutarstaničnim signalnim putevima (7, 10).

Slika 2. Vrste autofagije u stanicama sisavaca (prilagođeno prema prikazu iz reference 8)
1.3. Osnovni mehanizam autofagije

Ključni proteini u regulaciji autofagije mogu se podijeliti u nekoliko različitih funkcionalnih skupina, ovisno za koji su korak autofagije nužni. Autofagija je, u suštini, regulirana kompleksom Atg1 i njegovim proteinima, kompleksom Vps34 i njegovim proteinima te dvama „ubikvitin-like“ (engl. ubiquitin-like, Ubl) sistemima konjugacije (5).

Atg1 kompleks, odnosno njegovi homolozi u stanicama sisavaca (ULK kompleks 1 i 2), proteinski je kompleks koji regulira indukciju formiranja autofagosoma. Atg1 (ULK1 i ULK2) su enzimi, serin-treonin protein kinaze, najbolje istražene u kvasaca. Atg9 i sustav njegovih cirkulirajućih proteina važan je za usmjeravanje membrane prema fagofor koja se širi.

Vps34 (engl. vesicular protein sorting 34) je lipidna kinaza koja sudjeluje u nukleaciji vezikule i veže se na protein Atg6, koji se u stanicama sisavaca naziva Beclin-1.

Dva Ubl konjugacijska sistema važna su za ekspanziju fagofore, ali i za završetak stvaranja autofagosoma. Prvi konjugacijski sistem uključuje kovalentnu konjugaciju proteina Atg12 s proteinom Atg5, dok je drugi Ubl sistem Atg8/LC3. Protein LC3 (engl. light chain 3) eksprimiran je na većini vrsta stanica kao citosolni protein, a pri indukciji autofagije cijepa se cisteinskom proteazom. Točna je uloga Atg8/LC3 u makroautofagiji još uvijek nedovoljno razjašnjena.

Nakon nastanka autofagosom se fuzijom spaja s lizosomom stvarajući autolizosom, u kojem se odvija konačna razgradnja staničnog otpada. Razgrađeni se produkti potom ispuštaju natrag u citosol pomoću permeaza, membranskih transportnih proteina.

Kao što je već spomenuto, mehanizam regulacije autofagije najbolje je istražen u kvasaca, no u viših eukariota i sisavaca proces je jednak, reguliran homolognim genima, zbog čega se autofagija i naziva visoko konzerviranim procesom (5, 7, 11, 12).
1.4. Boje za detekciju autofagnih vakuola

1.4.1. Monodanzil kadaverin (MDC)

Monodanzil kadaverin (engl. monodansylcadaverine, MDC) je boja s autofluorescentnim svojstvom koja se nakuplja u autofagnim vakuolama i fluorescira plavo. MDC se u vakuolama nakuplja zbog koncentracije iona unutar njih i specifičnih interakcija s membranskim lipidima na vakuolama. Dobar je selektivni marker za praćenje autofagije (13). MDC se najviše nakuplja u kiselim odjeljciima poput autolizosoma, dok za autofagosome nije specifičan, ali ih može označiti (14).

![Slika 3. Struktura MDC-a](image)

1.4.2. Akridin narančasto (AO)

Akridin narančasto (engl. acridine orange, AO) zelena je fluorescentna lizosomotropna boja koja se nakuplja u kiselim organelima u ovisnosti o pH. AO se protonira i ostaje unutar kiselih vezikula, odnosno autolizosoma (13). Akridin narančasto nije idealan marker autofagije jer detektira i lizosome, ali je koristan za praćenje selektivne autofagije (14).

![Slika 4. Struktura AO](image)
1.4.3. Komercijalni set za detekciju autofagije

Za detekciju autofagije mogu se koristiti i komercijalno dostupni setovi različitih proizvođača.

Komercijalni set za detekciju autofagije je brz, specifičan i kvantitativan esej za detekciju autofagije u staničnim uzorcima (15). Komercijalnim setovima moguće je detektirati autofagiju na različite načine, od fluorescentne mikroskopije, protočne citometrije pa do fluorescentnog microplate eseja.
2. HIPOTEZA

Različite boje koje se koriste za bojenje autofagnih vakuola mogu bojiti različite stadije u autofagiji te ne daju podudarne rezultate.
3. CILJ RADA

Cilj je ovoga rada usporediti tri osnovna principa bojenja autofagnih vakuola:

1. Monodanzil kadaverin (MDC);
2. Akridin narančasto (AO);

Cilj je rada analizom rezultata odrediti koja je od metoda najprikladnija za detekciju autofagije u našim uvjetima rada te odrediti prednosti i nedostatke svake od ispitivanih metoda.
4. MATERIALI I METODE

4.1. Materijal

4.1.1. Pribor i kemikalije

Za provođenje eksperimenta koristili smo se sljedećim priborom i kemikalijama:

- Medij za održavanje i kontrolni medij: Dulbecco modificirani Eagleov medij (DMEM) *high glucose* (4,5 g/l) s dodatkom 10 % FBS-a, Capricorn Scientific GmbH, Njemačka
- DMEM *low glucose* (1 g/l) s dodatkom 10 % FBS-a, Capricorn Scientific GmbH, Njemačka
- DMEM *high glucose* (4,5 g/l) s dodatkom 1 % FBS-a, Capricorn Scientific GmbH, Njemačka
- Kadaverin: Dansylcadaverine, SIGMA
- Akridin narančasto: Acridine orange solution, SIGMA
- Set za detekciju autofagije, abcam139484, abcam®
- 0,25 % Tripsin/EDTA (1 mM EDTA – Na4 u HBSS-u s phenol red), PAN BIOTECH, GmbH, Njemačka
- Tripan blue, 0,4 %, SIGMA
- Boce za uzgoj adherentnih stanica, 25 cm², Nunc™
- 6 – well Multiwell Tissue Culture Plate, ploča za uzgoj, Falcon®, SAD
- Bürker-Türkova komorica za brojanje stanica

4.1.2. Stanična linija

Za praćenje autofagije korištena je HeLa stanična linija. HeLa su stanice humanog tumorskog tkiva – adenokarcinoma grlića maternice.
4.2. Metode

4.2.1. Održavanje stanica u kulturi

Stanična linija HeLa nasadena je u Nunc™ boce za uzgoj površine 25 cm² u DMEM high glucose (4,5 g/l) mediju (Capricorn Scientific GmbH, Njemačka) s dodatkom 10 % FBS-a (engl. fetal bovine serum – fetalni govedi serum) te se inkubirala na 37 °C u 5 % CO₂ inkubatoru (IGO 150 CELLlife™, JOUAN, Thermo Fisher Scientific, SAD). Za daljnjeg korištenja i brojanje stanica potrebno je stanice odvojiti od podloge tripsinizacijom. Medij u kojemu su stanice bile inkubirane pokupi se i baci, a stanice se zatim ispiru s 1 ml PBS-a. PBS se pokupi i baci te se na stanice dodaje 1 ml tripsina. Višak tripsina pokupi se i baci, a bočica sa stanicama zatvara se i stavlja u inkubator na 6 minuta. Nakon isteka inkubacije, pod mikroskopom se provjeri jesu li se stanice odlijepile te se po potrebi dodaje svježi medij i resuspendira.

4.2.2. Određivanje broja stanica

Prije nasadivanja za eksperiment potrebno je utvrditi broj vijabilnih stanica te odrediti potreban volumen stanica za nasadivanje.

50 µl stanične suspenzije resuspendira se sa 100 µl tripanskog plavila, nanese na Bürker-Türkova komoricu i zatim broji pod invertnim mikroskopom (Zeiss Axiovert 25, Njemačka). Tripan plavilo ulazi u stanice koje imaju oštećenu staničnu membranu, odnosno boji mrtve stanice plavo. Žive stanice ostaju neobojene jer stanična membrana ne dopušta prodor boje unutar stanice. Stanice se prebrojavaju unutar 4 kvadranta Bürker-Türkove komorice (slika 5.).
Slika 5. Princip brojanja stanica u jednom kvadrantu Bürker-Türkove komorice

U sva 4 kvadranta proizvoljno izaberemo rubne dijelove komorice u formi slova L te osim stanica unutar same komorice, sve stanice koje dotiču prvu liniju rubnog dijela odabrane forme slova L brojimo. Stanice koje dotiču preostala dva rubna dijela komorice ne brojimo.

Ukupan broj vijabilnih stanica zatim se određuje po formuli:

\[R = \frac{N}{4} \times 3 \times 10^4 \text{ stanica/ ml} \]

Pri tome je R ukupan broj vijabilnih stanica, N broj izbrojanih stanica, 4 je broj kvadranta Bürker-Türkove komorice, a 3 faktor razrjeđenja. Volumen stanica dalje se prilagođava prema unaprijed određenom potrebnom broju stanica.

4.2.3. Nasadivanje stanica

HeLa stanice početne koncentracije 1 x 10⁵ i prilagođenog volumena nakon određivanja broja stanica nasadene su na ploču sa 6 jažica u koju smo prethodno dodali medije. Na tri ploče nasadivale su se stanice za rast u različitim vremenskim periodima (24 h, 48 h i 72 h). Prvi dan nasadilo se 1 x 10⁵ HeLa stanica, drugi dan 2 x 10⁵, a treći dan 3 x 10⁵ stanica po jažici u ukupnom volumenu od 3 ml. Stanice su nasadene u različite medije prema shematskom prikazu na slici 4.
Slika 6. Shematski prikaz ploče s medijima za nasadivanje stanica (1. K: DMEM *high glucose* 2. – Glu: DMEM *low glucose*; 3. –FBS: DMEM *high glucose*, 1 % FBS)

4.2.4. Priprema uzoraka za bojenje

Nakon nasadivanja, mikrotitarske ploče sa 6 jažica sa stanicama smještaju se u inkubator na 24 h, 48 h ili 72 h.
Po isteku vremena inkubacije ploču sa stanicama vadimo iz inkubatora i prebacujemo u prethodno označene FALCON epruvete. Jažice isperemo s po 1 ml PBS-a (engl. *phosphate-buffered saline*, fosfatom puferirana otopina soli). Na stanice u jažicama zatim se dodaje 0,5 ml tripsina te se pričeka da se stanice odvoje od podloge. Isperemo ih s po još 1 ml PBS-a po jažici da bismo neutralizirali tripsin i prebacujemo u epruvete. Epruvete centrifugiramo 5 minuta na 1100 rpm. Nakon početnog centrifugiranja iz epruvete izlijemo medij, dodamo u svaku epruvetu po još 1 ml PBS-a, resuspendiramo i ponovno centrifugiramo 5 minuta na 1100 rpm.

4.2.5. Bojenje uzoraka

Monodanzil kadaverin (MDC) otopljen je u metanolu u „stock“ otopini koncentracije 50 mmol i razrjeđuje se u PBS-u. Za bojenje uzoraka, „stock“ otopina razrijeđena je na koncentraciju od 50 μmol. Po uzorku se dodaje 500 μl otopine boje i inkubira 10 minuta u mraku.
Radna otopina AO koncentracije 1 µg/ml doiva se iz „stocka“ razrjeđivanjem u PBS-u. U uzorke koje treba obojiti dodaje se 500 µl otopine za bojenje te se uzorci se inkubiraju 30 minuta na 37 °C.

Od komercijalno dostupnih setova za detekciju autofagije, korišten je set ab139484 tvrtke abcam®. Za pripremu otopine boje, 1 µl Green Detection Reagenta razrjeđuje se u 1 ml DMEM medija bez indikatora (bez fenol crvenog), s dodatkom 5% FBS-a. U svaki od uzoraka koji treba obojiti dodaje se 250 µl razrijeđene boje te se inkubira 30 minuta na sobnoj temperaturi, ili na 37 °C, u mraku. Nakon inkubacije uzoraka s bojom, uzorci se centrifugiraju i ispiru puferom (Assay Buffer) (15).

4.3. Statističke metode

Rezultati dobiveni na protočnom citometru za svaki od tri protokola bojenja stanica analizirani su programskim paketom FlowJo (v. 10. 06). Svi pokusi izvedeni su u triplikatu. Rezultati su prikazani grafički u obliku histograma.
5. REZULTATI

Autofagija na HeLa staničnoj liniji inducirana nedostatkom hranjivih tvari (glukoze) praćena je bojenjem autofagnih vakuola. Autofagne vakuole bojene su na tri načina: monodanzil kadaverinom, akridin narančastim i komercijalnim kitom za detekciju autofagije. Rezultati su dobiveni očitavanjem uzoraka na BD FACSCanto™ II protočnom citometru i prikazani grafički u obliku histograma.

5.1. Bojenje MDC-om

5. REZULTATI

7. A

7. B
5. REZULTATI

Slika 8. Grafički prikaz analize rezultata u uzorcima bojenim MDC-om u tri perioda inkubacije (24 h, 48 h i 72 h), nasadena u tri medija. HeLa stanice nasadivane su u koncentracijama $1 – 3 \times 10^5$. Statistički značajna p vrijednost definirana je kao $p < 0,05$ (*) u odnosu na kontrolni medij.

5.2. Bojenje AO-om

Za bojenje akridin narančastim odabrani su uzorci za prikaz rezultata inkubirani 48 h, uzevši u obzir činjenicu da kod početnog bojenja uzoraka MDC-om stanice u mediju sa smanjenim udjelom seruma nisu preživjele najdužu inkubaciju. Kod bojenja AO-om vidljive su najveće razlike između uzoraka u medijima sa smanjenim udjelom hranjivih tvari i kontrole. Stanice u mediju sa smanjenim udjelom seruma (DMEM high glucose (4,5 g/l), 1 % FBS) pokazuju smanjenu autofagiju u odnosu na kontrolu.
Slika 9. Grafički prikaz autofagije u uzorcima bojenim AO-om nakon inkubacije od 48 h. HeLa stanice nasadi one su u koncentraciji 2×10^5 na ploču sa 6 jažica u tri različita medija: kontrolnom mediju, mediju sa smanjenim udjelom glukoze te mediju sa smanjenim udjelom FBS-a. Uzorci su po isteku vremena inkubacije bojeni po protokolu za bojenje AO-om te analizirani protočnom citometrijom.
5. REZULTATI

Slika 10. Grafički prikaz analize rezultata u uzorcima bojenim AO-om u periodu inkubacije od 48 h. HeLa stanice nasadene su u koncentraciji 2×10^5. Statistički značajna p vrijednost definirana je kao $p < 0,05$ (*) u odnosu na kontrolni medij.

5.3. Bojenje ab139484 setom za detekciju autofagije

U uzorcima bojenim komercijalnim setom za detekciju autofagije (ab139484 tvrtke abcam®) primjećujemo vrlo malu fluorescenciju. Razlike između uzoraka nasadenih u različitim medijima uopće se ne vide, stoga nije moguće kvalitetno detektirati autofagiju.
5. REZULTATI

6. RASPRAVA

Poznato je da autofagija u fiziološkim uvjetima ima adaptivnu ulogu u zaštititi organizma od oksidativnog stresa, nedostatka nutrijenata ili hormona, infekcija te brojnih ostalih ekstracelularnih podražaja koji mogu rezultirati razaranjem stanica i okolnog tkiva. Defekti u signalnim putevima koji vode do izvršenja autofagije povezani su s brojnim patofiziološkim stanjima (13, 16). Zbog toga je proučavanje autofagije važno za brojna istraživanja u medicini i farmakologiji.

Premda autofagija pripada tipu II stanične smrti (neapoptotična programirana stanična smrt), svoju stvarnu ulogu pokazuje u održavanju nutritivne i energetske homeostaze te razgradnji unutarstaničnih proteina i oštećenih organela (16). Jedan je od najvažnijih induktora autofagije u stanicama sisavaca nedostatak nutrijenata, osobito glukoze. Pri nedostatku glukoze autofagijom se razgrađuju stanični elementi te se produkti razgradnje dalje koriste kao izvori energije i građevni elementi (17).

Posljednjih godina razvijene su brojne tehnike za praćenje autofagije ili za obilježavanje njezinih funkcija u staničnim procesima. Mizushima i sur. u svom radu „Methods in Mammalian Autophagy Research“ naglašavaju da ne postoji savršena metoda, odnosno „zlatni standard“ za praćenje autofagije (broja autofagosoma), ni savršena metoda za praćenje specifične aktivacije ili inhibicije autofagije, već preporučuju upotrebu nekoliko različitih metoda istovremeno da bi se izveo točan zaključak o stupnju autofagije do kojega je došlo u ispitivanim organizmima ili staničnim uzorcima (18). Jedan od najčešće korištenih načina za istraživanje autofagije je kultura stanica (19).

Glavne metode za praćenje aktivnosti tijekom autofagije u suštini se mogu podijeliti na direktnje i indirektnje. Direktnim metodama praćenja pripada sekvestracija LDH enzima te „turnover“ dugoživućih proteina, dok indirektnima pripadaju eseji bazirani na Western blotu (npr. lipidacija LC3, postranslacijske modifikacije), fluorescentnoj i elektronskoj mikroskopiji, te protočnoj citometrijih (19).

Prema toj podjeli, s obzirom na to da smo obojene uzorke analizirali na protočnom citometru, bojenja kojima smo se koristili u ovom eksperimentu pripadala bi indirektnim metodama. MDC i AO su acidotropne boje, odnosno nakupljaju se u kiselim odjeljcima – autolizosomima. Rezultate svih triju bojenja bilo je moguće analizirati fluorescentnom mikroskopijom ili protočnom citometrijom.

23
Iz grafički dobivenih rezultata na protočnom citometru možemo donijeti zaključke o učinkovitosti svakog od tri bojenja koja smo u eksperimentu primijenili.

U uzorcima bojenim MDC-om ne primjećuje se skoro nikakva razlika, odnosno nije vidljiva značajna razina autofagije u uzorcima inkubiranim 24 h i 48 h. Proizvođač navodi da MDC otopljen u metanolu ima λ ekscitacije od 335 nm, a λ emisije od 512 nm (20). MDC fluorescira plavo (13). Protočni citometer BD FACSCanto™ II kojim smo se koristili za analizu stanica opremljen je s tri ekscitacijska lasera (plavi, crveni i ljubičasti), od kojih laser za plavo ima valnu duljinu od 488 nm (21). Nedostatak vidljive razlike u autofagiji između uzoraka inkubiranih u tri različita vremena, stoga, možemo pripisati neoptimalnom setu filtera i lasera kojima raspoloža naš protočni citometer.

Bojenje autolizosoma MDC-om stoga bi bila prikladnija metoda za promatranje obojenih vakuola fluorescentnom mikroskopijom.

Tijekom eksperimenta stanice pripremane za bojenje MDC-om nisu preživjele period najduže inkubacije u mediju sa smanjenim udjelom FBS-a, zbog čega smo za praćenje autofagije ostalim načinima bojenja izabrali samo period od 48 h.

Iz grafičkih rezultata u uzorcima bojenim AO-om nakon 48 h vidljivi su najbolji rezultati; lako je uočljiva razlika između uzoraka tretiranih medijima s manjkom glukoze i seruma u odnosu na kontrolu.

Murugan i Amaravadi u svom radu „Methods for Studying Autophagy Within the Tumor Microenvironment“ naglašavaju da se MDC lako nakuplja u kasnim endosomima, a AO u drugim kiselim nelizosomskim odjeljcima. Stoga je važno koristiti se tim metodama u kombinaciji s drugim načinima praćenja autofagije (13).

Uzorci bojeni komercijalnim ab139484 setom za detekciju autofagije pokazuju vrlo malu fluorescenciju te se razlike u broju stanica unutar kontrolnog medija, medija sa smanjenim udjelom glukoze i medija sa smanjenim udjelom FBS-a gotovo uopće ne vide. Set ab139484 ima spektralne karakteristike slične FITC-u, stoga je namijenjen za detekciju u FITC području (15). U našim uzorcima nismo imali adekvatno jaku FITC fluorescenciju, stoga tim kitom nije bilo moguće adekvatno detektirati autofagiju.
Bojenje autolizosoma monodanzil kadaverinom, akridin narančastim ili komercijalno dostupnim setom relativno je jednostavna te, osim pripreme uzoraka za protočnu citometriju, vremenski nezahtjevna metoda s mogućnošću dobivanja točnih rezultata. Ipak, kao što potvrđuju i naglašavaju brojni znanstvenici koji se bave proučavanjem metoda za praćenje autofagije, nužno je paralelno provoditi nekoliko različitih eksperimentalnih pristupa da bi se mogao donijeti čvrst zaključak o postojanju autofagije u istraživanim staničnim uzorcima (14, 18, 19).
7. ZAKLJUČAK

Na temelju dobivenih rezultata može se zaključiti sljedeće: monodanzil kadaverin, akridin narančasto i komercijalno dostupni set za detekciju autofagije relativno su jednostavne i brze metode bojenja autofagnih vakuola. Najbolje rezultate bojenja daje akridin narančasto, dok bojenje monodanzil kadaverinom i komercijalnim setom za detekciju ne daje vidljive razlike u uzorcima inkubiranim u tri različita perioda zbog neoptimalnih postavki lasera ili smanjene fluorescencije u uzorcima. Svaka od tih metoda bojenja autofagnih vakuola nije dostatna samostalno, već je potrebno koristiti se i drugim metodama praćenja autofagije da bi se mogli donijeti čvrsti zaključci.
8. SAŽETAK

Uvod: Autofagija je katabolički proces koji pripada tipu II neapoptotičke stanične smrti. Inducira se pri oksidativnom stresu, nedostatku nutrijenata i hormona, pri infekciji ili drugim ekstracelularnim podražajima. Procesom autofagije stanični se materijal, organeli i proteini unose u vezikule (autofagosome) koji se spajaju s lizosomima kako bi se omogućila degradacija staničnog otpada. Praćenje mehanizma autofagije bitna je sastavnica medicinskih i farmakoloških istraživanja, jer poremećaji u mehanizmu autofagije dovode do raznih patoloških promjena u organizmu.

Cilj rada: Usporediti tri osnovna principa bojenja autofagnih vakuola. Nakon pripreme uzoraka i bojenja, analizom rezultata odrediti koja je od metoda najprikladnija za detekciju autofagije u našim uvjetima rada.

Materijal i metode: Uzorci HeLa stanične linije (1 – 3 x 10^5 stanica po jažici), inkubirane u 24 h, 48 h i 72 h u tri različita medija obojene su po protokolima za bojenje. Rezultati su analizirani na protočnom citometru.

Rezultati: Bojenje MDC-om i komercijalnim setom za detekciju autofagije ne daje vidljivu razliku u rezultatima zbog neoptimalnih postavki lasera ili smanjene fluorescencije. Najbolje rezultate, s najvidljivijom razlikom, daje bojenje AO-om.

Ključne riječi: abcam set; AO; autofagija; autolizosomi; bojenje; MDC; protočna citometrija stanična kultura
9. SUMMARY

Comparison and adequate method selection for effective autophagy detection in cell culture samples

Introduction: Autophagy is a catabolic process of type II non-apoptotic cell death. Its induction is due to oxidative distress, lack of nutrients or hormones, infection or other extracellular stimuli. Cell material, organelles or proteins are engulfed within the vesicles (autophagosomes) that fuse with lysosomes in order to degrade the intracellular cargo. Studying autophagy mechanism is an important part of medical and pharmacological research, since the malfunction in autophagy mechanism can lead to various pathological changes in an organism.

Objectives: To compare three primary methods of staining. To determine which method is the most suitable for autophagy detection after sample preparation, staining and result analysis.

Materials and methods: Samples of HeLa cells (1-3 x 10^5 cells per well), incubated for 24 h, 48 h and 72 h in three different media were stained following the staining protocols. The results were analysed on a flow cytometer.

Results: The staining with MDC and a detection kit does not provide a visible difference in results due to nonoptimal laser setup or reduced fluorescence. The best results are provided with AO staining.

Conclusion: The staining of autophagy vacuoles is a quick and simple method of monitoring autophagy. The best results are obtained with the AO staining. These methods alone are not sufficient for autophagy detection, so using several detection methods in order to draw robust and accurate conclusions about autophagy in selected cell samples is required.

Keywords: abcam kit; AO; autolysosomes; autophagy; cell culture; flow cytometry; MDC; staining
10. LITERATURA

11. ŽIVOTOPIS

OSOBNI PODATCI

Ime i prezime: Lucija Žuvela
Datum i mjesto rođenja: 28. 4. 1993., Split, Republika Hrvatska
Adresa stanovanja: 65. ulica broj 27, 20 271 Blato
E-pošta: lucija.zuvela@gmail.com
Mobitel: 091 536 6427

OBRAZOVANJE

 - diplomski sveučilišni studij Medicinsko laboratorijske dijagnostike
2014. – 2017. Sveučilište u Splitu, Sveučilišni odjel zdravstvenih studija
 - preddiplomski sveučilišni studij Medicinsko laboratorijske dijagnostike
2012. – 2014. Sveučilište u Splitu, Fakultet građevinarstva, arhitekture i geodezije
 - preddiplomski sveučilišni studij Geodezije i geoinformatike

OSOBNE VJEŠTINE

Materinski jezik: hrvatski
Strani jezici: engleski (C1), njemački (A2), talijanski – osnove
 - klarinet uz nastavu solfeggija
2006. – danas Narodna glazba Blato, Blato
 - puhački orkestar, klarinetistica