UTJECAJ POJEDINIH PREDIKTORA NA POJAVNOST POZITIVNOG COX-2 NALAZA U TKIVIMA SPOJNIČE

Reisz - Majić, Patricia

Doctoral thesis / Disertacija

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Medicinski fakultet Osijek

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:152:220661

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-11-06

Repository / Repozitorij: Repository of the Faculty of Medicine Osijek
PATRICIA REISZ-MAJIĆ

UTJECAJ POJEDINIH PREDIKTORA NA POJAVNOST POZITIVNOG COX-2 NALAZA U TKIVIMA SPOJNICE

DOKTORSKA DISERTACIJA

OSIJEK, 2017.
PATRICIA REISZ - MAJIĆ

UTJECAJ POJEDINIH PREDIKTORA NA POJAVNOST POZITIVNOG COX-2 NALAZA U TKIVIMA SPOJICE

DOKTORSKA DISERTACIJA

OSIJEK, 2017.
Mentor rada: Prof. Prim. dr. sc. Branimir Cerovski, specijalist oftalmologije, subspecijalist neurooftamologije
Komentor rada: Doc. dr. sc. Josip Barać, specijalist oftalmologije, subspecijalist prednjeg segmenta oka
Rad ima 72 lista, 16 tablica i 10 slika.
Sadržaj

POPIS KRATICA .. II
1. UVOD ... 1
2. HIPOTEZA .. 7
3. CILJ ISTRAŽIVANJA ... 8
4. ISPITANICI I METODE ... 9
 4.1. Ustroj studije .. 9
 4.2. Ispitanici .. 9
 4.2.1. Bolesnici .. 9
 4.2.2. Kontrolna skupina .. 9
 4.3. Metode .. 10
5. REZULTATI ... 13
 5.2. Osnovna obilježja ispitanika .. 16
 5.3. Izloženost Sunčevom zračenju i nalaz antitijela na COX-2 18
 5.4. Uloga ispitivanih parametara u predviđanju pozitivnog nalaza antitijela na COX-2 (regresijska analiza) .. 28
 5.5 Uloga ispitivanih parametara u predviđanju pozitivnog nalaza antitijela na COX-2 (ROC analiza) ... 30
6. RASPRAVA ... 32
7. ZAKLJUČAK ... 37
8. SAŽETAK .. 38
9. SUMMARY ... 39
10. LITERATURA ... 41
11. ŽIVOTOPIS ... 47
12. PRILOZI ... 53
POPIS KRATICA
AIM akutni infarkt miokarda
AP (lat. *angina pectoris*)
AUC (engl. *area under the curve*)
CMP (engl. *cardiomyopathy*)
COX-1 (engl. *cyclooxygenase 1*) ciklooksigenaza 1
COX-2 (engl. *cyclooxygenase 2*) ciklooksigenaza 2
DHMZ Državni hidrometeorološki zavod
DM (lat. *diabetes mellitus*)
DNK deoksiribonukleinska kiselina
EBV *Ebstein-Barr* virus
ECCE (engl. *extracapsular cataract extraction*)
ESA (*European Space Agency*)
E-SPF (engl. *eye-sunburn protection factor*)
FGF (engl. *fibroblast growth factor*)
HPV humani papilloma virus
HSV herpes simplex virus
HTA (engl. *hypertensio arterialis*)
IAPs (engl. *Inhibitors of Apoptosis Proteins*)
ICV (lat. *Insultus Cerebro Vascularis*)
KBC Klinički bolnički centar
KNMI (nizoz. *Koninklijk Nederlands Meteorologisch Instituut*)
KOPB kronična opstruktivna plućna bolest
NSAIL (nesteroidni antiinflamatorni lijekovi)
OBŽ Osječko-baranjska županija
PDGF (engl. *platelet derived growth factor*)
PGE2 prostaglandin E2
PHACO (engl. *phacoemulsification*)
RNK ribonukleinska kiselina
ROC (engl. *Receiver Operating Characteristic*)
ROS (engl. *reactive oxygen species*)
SPF (engl. *sunburn protection factor*)
SZK Sunčev zenitni kut
TEMIS (engl. *Tropospheric Emission Monitoring Internet Service*)
TA (engl. *triamcinolone acetonide*)
TGF-β (engl. *transforming growth factor-β*)
TNF-α (engl. *tumor necrosis factor α*)
UV (engl. *ultraviolet*)
VEGF (engl. *Vascular endothelial growth factor*) vaskularni endotelni faktor rasta
1. UVOD

Pterigij je česta proliferativna, trokutasta fibrovaskularna, kronična upalna, infiltrativna patološka promjena bulbarne spojnice koja raste subepitelijalno od limbusa k središtu rožnice. Studije pokazuju da je češće smještena nazalno i unilateralno, a rjeđe bilateralno i temporalno. Ima obilježja poremećaja rasta poput tumora, kao što je sklonost napadanju (invazivnosti) normalnog tkiva i visoka stopa recidiva nakon operacije (1), a može biti uz druge (pre)maligne lezije (2) spojnice i rožnice. Sumnja se da potječe od limbalnih matičnih stanica koje su promijenjene kroničnim izlaganjem ultraljubičastom (engl. ultraviolet (UV)) zračenju (3). Klinički ga po uznapređenosti možemo podijeliti u četiri stadija: I. stadij: dolazi do limbusa, ali ne urasta u tkivo rožnice; II. stadij: zahvaća tkivo limbusa; III. stadij: tkivo pterigija je između limbusa i središta rožnice; IV. stadij: tkivo pterigija zahvati središte rožnice, prelazi zjenicu. Simptomi pterigija uključuju učestalo crvenilo, upalu, osjećaj stranog tijela u oku, suhoću i svrbež oka. U uznapređenim slučajevima, kad pterigij zahvati središnje dijelove rožnice, može dovesti do značajnog pada vida zbog astigmatizma i/ili prerastanja središta rožnice i ožiljkavanja rožnice.

Procijenjena prevalencije pterigija u općoj populaciji, dobivena prvom meta-analizom (4) u Velikoj Britaniji (na osnovi podataka dobivenih iz 20 internacionalnih studija i na 900 545 ispitanika), jest visoka, 10,2 %. Globalno prevalencija u literaturi varira od 0,7 % u Copenhagenu (5), u Kyotu 1 % (6), na otoku Rabu 23 % (7), u sjeverozapadnoj Etiopiji 38,7 % (8), u sjeverozapadnoj Australiji kod Aborigina 44 % (9), a u Španjolskoj 47,9 % (10). Ruralni način života jedan je od parametara koji su vezani uz dugotrajnu kumuliranu izloženost Sunčevu zračenju, izloženost kemijskim i mehaničkim irritansima te kroničnu suhoću površine oka (11). U mnogim studijama primijećeno je da se prevalencija povećava posebno u krajevima uz ekvator, na višim nadmorskim visinama (12) i raste u pojedinim populacijama s porastom životne dobi (4), nadmorske visine ili s godinama izloženosti Sunčevom zračenju. Zbog visoke prevalencije i potencijalne onesposobljenosti bolesnika predstavlja važan javnozdravstveni problem u takvim populacijama.
Pretpostavljaju se različiti uzročni čimbenici (13, 14) koji doprinose razvoju pterigija, kao što su genetski čimbenici (15, 16, 17, 18), izloženost Sunčevom zračenju, upala (19), kemijski i mehanički irritansi, ali i infekcija pretpostavljenim onkogenim virusima kao što su *human papilloma* virus (HPV)(20), adenovirusi (21), *Ebstein-Barr* virus (EBV) ili *herpes simplex* virus (HSV). Neke studije upućuju i na infekciju *Demodex folliculorum* ili *Demodex brevis* kao čimbenikom važnim za razvoj pterigija (22) jer je u analiziranim uzorcima pterigija nalaz brisa na navedene infekcije bio u 93,33 % pozitivan. Podatci studija sugeriraju multifaktorijalnu patogenezu pterigija (11, 13, 14), a ova je studija usredotočena na upalnu komponentu i korelaciju s dugotrajnom izloženošću Sunčevom zračenju (23).

Koža ima sposobnost proizvodnje zaštitne tvari (melanin) kojom se barem djelomično štiti od štetnog djelovanja UV zračenja dok takvu zaštitu oči nemaju (24).

UV zračenje (4, 23, 25-27) može inducirati stanične promjene bulbarne spojnice limbusa, tj. limbalnih matičnih stanica i fibroblasta te potaknuti različite upalne citokine, faktore rasta i matrične metaloproteinaze, koji dalje potiču proliferaciju pterigija (28). Na molekularnoj razini (29) opisuje se “oksidativni stres”, metilacija deoksiribonukleinske kiseline (DNK), nekodiranje ribonukleinske kiseline (RNK), modifikacije histona, remodeliranje kromatina, apoptotički mehanizmi, onkogeni proteini, gubitak heterozigotnosti, upalni medijatori, stanične epitelno-mezenhimalne tranzicije, poremećaji metabolizma kolesterola te mnogi drugi pretpostavljeni utjecaji koji su u fazi istraživanja. Izolirano je nekoliko citokina (19, 30, 31): transformirajući čimbenik rasta β (engl. transforming growth factor-β (TGF-β)), tumor nekrotizirajući čimbenik α (engl. tumor necrosis factor α (TNF-α)) i čimbenik rasta fibroblasta (engl. fibroblast growth factor (FGF)) u uzorcima tkiva pterigija. U fibroblastima pterigija dokazana je ekspresija fibroangiogenih faktora kao što su FGF, TGF-β i TNF-α i čimbenik rasta izveden iz trombocita (engl. platelet derived growth factor (PDGF)), koji sugerišu svojo značajnu ulogu u patogenezi pterigija (31). Dokazana je povezanost u tkivu pterigija imunohistokemijskih nalaza interleukina 17 (IL-17) i vaskularnog endotelnog faktora rasta (engl. Vascular endothelial growth factor (VEGF)) (19), što ukazuje na upalnu komponentu u sprezi s angiogenezom te povezanost između TNF-α i VEGF-C, koji igra važnu ulogu u limfangiogenezi pterigija (32).

Ciklooksigenaza-2 (engl. cyclooxygenase 2(COX-2)) složena je organska molekula, klasificirana u skupinu enzima, koja se stvara pod utjecajem brojnih čimbenika (33), kao što su faktori rasta, miotogeni, tumorski promotori i citokini (34). Postoje dokazi koji ukazuju na COX-2 prostanoidni put upale (35, 36). U nekim su studijama dobiveni visoki postotci

Sunčevim zračenjem nazivamo ukupno elektromagnetsko zračenje koje emitira Sunce. Sastoji se od različitih valnih duljina (47). Veliki dio elektromagnetskog spektra ima kraće valne duljine od vidljivog dijela spektra i štetan je za žive organizme (48). To je područje gama zraka, X zraka i UV zraka.

Na osnovi bioloških učinaka izvršena je podjela UV zračenja:

a) UV-A čini 0,5% ukupnog Sunčevog zračenja, prolazi kompletno kroz ozonski omotač i čini 96% ukupnog UV zračenja koje dolazi do Zemljine površine.
b) UV-B čini 1,5% ukupnog Sunčevog zračenja, djelomično se apsorbira u ozonskom omotaču, a dio koji dopire do Zemljine površine čini 4% ukupnog UV zračenja.
c) UV-C čini 6,3 % ukupnog Sunčevog zračenja, a količina koja dopire do tla praktično je zanemariva jer je gotovo u cijelosti apsorbirana u ozonskom omotaču. Dio UV zračenja koji ipak dođe do Zemljine površine biva apsorbiran u tlu, a dio se reflektira u omjeru 1 : 1. Količina reflektiranog zračenja ovisi o površini (24).

Ozon (O3) jest alotrop čija se molekula sastoji od 3 atoma kisika. U Zemljinoj atmosferi najveći dio ozona smješten u stratosferi na visini od 20 do 50 km iznad površine. Odgovoran je za upijanje (kompletno) UV-C i (djelomično) UV-B dijela spektra ultraljubičastog zračenja koje dolazi od Sunca. Ukupno UV zračenje pri tlu sastoji se od 94 % UV-A i 6 % UV-B. Budući da je ozon glavni apsorber UV-B zračenja, njegov intenzitet na Zemljinoj površini jako ovisi o ukupnoj količini ozona u atmosferi, tj. o debljini ozonskog sloja.

Nadmorska visina bitno utječe na količinu izloženosti UV zračenju, tj. visinom se mijenja količina apsorbirajućih tvari u atmosferi pa za svakih 1 000 m povećanja nadmorske visine UV zračenje poraste za 6 – 8 % (24). To praktično pokazuju neke druge studije (12), koje opisuju porast prevalencije promatranih promjena (pterigija) koje su nastale zbog dugotrajnog kumuliranog izlaganja suncu u određenim populacijama gdje prevalencija pterigija proporcionalno raste s porastom nadmorske visine.

Oblaci su vidljive nakupine sitnih kapljica vode i/ili kristala leda u troposferi, a općenito smanjuju intenzitet UV ozračenja pri tlu, no to ovisi o debljini, visini podnice oblaka u odnosu na tlo i tipu/sastavu oblaka. Tako ponekad zbog visokog udjela reflektiranog (indirektnog) zračenja o čestice oblaka, što je vezano uz sastav građe oblaka, može doći do sinergističkog učinka direktnog i indirektnog zračenja na izloženu površinu i tako povećati njegovu izloženost UV zračenju. Vođene čestice i aerosoli dovode do smanjenja UV ozračenja. Općenito se može reći da niži i deblji oblaci propuštaju manju količinu UV zračenja dok visoki i tanki slabo zaustavljaju UV zračenje. Kako debljina troposfere raste od polova prema ekvatoru, to su podnice oblaka u polarnim područjima bliže tlu nego u umjerenim širinama, a u ekvatorijalnom području udaljenije od tla. Posljedica je toga porast UV zračenja na ekvatoru u odnosu na polarne krajeve.

Na osnovi niza mjerenja prognostički modeli uzimaju naoblaku kao čimbenik koji smanjuje UV zračenje u sljedećim postotcima (49):

a) Vedro nebo propušta 100 % UV zračenja.

b) Visoki i tanki oblaci propuštaju 89 % UV zračenja.

c) Razlomljena naoblaka propušta 73 % UV zračenja.

d) Potpuno zastrto nebo propušta samo 31 % UV zračenja.
U ovoj smo studiji te činjenice u metodologiji uzeli u obzir kako bismo izračunali što točnije dugotrajne (kumulirane) individualne izloženosti ispitanika UV zračenju.

UV zračenje može se mjeriti:
- kao ozračenje (iradijancija) – snaga pristigla na jediničnu površinu – u jedinicama W/m²,
- kao ozračenost (radijativna izloženost) ili doza – energija pristigla na jediničnu površinu u specifičnom vremenskom intervalu – u jedinicama J/m².

Sunčevim zenitnim kutom (SZK) naziva se kut između zenita i smjera Sunca, čiji se iznos u podne svakodnevno mijenja s obzirom na određeni geografski položaj na Zemlji i, ovisno o danu u godini, ima najznačajniji utjecaj na dnevni hod prizemnog ozračenja. Kada UV zračenje prevarljuje dulji put, smanjuje se direktna komponenta zračenja, a povećava se difuzna. Količina izravnog UV zračenja koje pristiže do Zemljine površine umanjuje se za količinu raspršenog (47). Zbog toga je maksimalno UV zračenje oko ekvatora, ljeti i u podne.

Mjerenja Sunčevog zračenja
Heliograf daje podatke o insolaciji, tj. trajanju obasjavanja izravnim Sunčevim zračenjem. Te smo podatke koristili u ovoj studiji. Za mjerenje ultraljubičastog zračenja koriste se UV metri. Oni imaju različite vrste senzora koji mjere u različitim područjima UV spektra. Osim prizemnog mjerenja UV zračenja, jedna je od metoda određivanja prizemnog UV zračenja i pomoću satelitskog mjerenja troposferskih plinova u tragovima. Ti se podatci dalje koriste za modeliranje podataka o UV zračenju (50).

Motrenje naoblake
Naoblaka je stupanj pokrivenosti nebeskog svoda oblacima, tj. stupanj količine oblačnog pokrivača u odnosu na cijelo nebo. Naoblaka se određuje vizualnim opažanjem, a u klimatologiji se izražava u desetinama (pokrivenog) neba, tj. brojevima od 0 do 10, gdje 0 označava potpuno vedro nebo bez ijednog oblačića, a 10 potpuno oblačno nebo.

UV indeks TEMIS projekta
U sklopu projekta TEMIS (Tropospheric Emission Monitoring Internet Service) u suradnji Europske svemirske agencije ESA (European Space Agency) i Nizozemskog kraljevskog meteorološkog instituta KNMI (Koninklijk Nederlands Meteorologisch Instituut), dostupna je usluga za primanje podataka za ukupni ozon i površinsko UV zračenje u gotovo realnom vremenu. Na temelju podataka za količinu ozona i Sunčevog zenitnog kuta te nadmorske visine željenog mjesta, računa se i producira podatak za UV indeks u uvjetima potpuno vedroga
vremena u solarno podne. Arhivi s podatcima za UV indeks potpuno vedroga neba TEMIS projekta nalaze se kao općedostupni, uz navođenje izvora (51).

Osječko-baranjska županija (OBŽ) prostire se na 4,152 km2 na sjeveroistoku Hrvatske i obuhvaća sjeveroistočnu Slavoniju i Baranju. Položaj OBŽ-a jest: 45° 32’ sjever i 18° 44’ istok. Nadmorska je visina 90 m iznad razine mora. Klima područja Osječko-baranjske županije određena je mješavinom utjecaja euраzijskog kopna, Atlantika i Sredozemlja. Prema Koeppenovoj klasifikaciji (52), riječ je o umjereno toploj, kišnoj klimi, bez značajnijih sušnih razdoblja, s oborinama jednoliko raspodijeljenima tijekom godine. Prosječna temperatura iznosi 11 °C (u proljeće 11 °C, u ljetu 21 °C, u jesen 11,8 °C, zimi 0,2 °C.

Mjerenje akutne izloženosti Sunčevom zračenju prilagođeni dozimetrima i vođenje dnevnika izloženosti samih ispitanika u studijama je pokazalo veliku ponovljivost i pouzdanost dobivenih podataka. Problem je što akutno, povremeno, izlaganje zračenju te njegovo mjerenje ne opisuje sve varijacije u odstupanju između opisanih mjerenja i ne može dati podatke o retrogradnom izlaganju Sunčevom zračenju kroz dulje vrijeme, koje mnogo bolje opisuje učinak zračenja na razvoj promatranih bolesti ili stanja.

U epidemiološkim studijama, koje su pokušavale istražiti što precizniji izračun za individualnu kumuliranu dugotrajnu izloženost Sunčevom zračenju, pokazalo se da, u nedostatku objektivnih mjerljivih podataka, osobne stabilne karakteristike/ponašanje ispitanika, okolišno Sunčevo zračenje i drugi meteorološki parametri udruženi mogu pomoći u točnijoj procjeni (53).

Kako bismo što točnije izračunali individualnu kumulativnu izloženost Sunčevom zračenju ispitanika u ovoj studiji, uvidom u slične studije (54, 55) uzeli smo u izračun, kao surogat za individualnu izloženost, detaljne anamnestičke podatke iz Upitnika i upotpunili s podatcima o geografskom položaju i okolišnom Sunčevom zračenju (broj sati sijanja po danu u godini, količina naoblake, broj vedrih dana, broj oblačnih dana) dobivenim iz podataka iz Državnog hidrometeorološkog zavoda (DHMZ) za promatrana razdoblja individualne izloženosti. U ovoj studiji usredotočili smo se na povezanost između duljine višegodišnje individualne izloženosti Sunčevom zračenju (u godinama i satima po godini izloženosti) i pozitivnih nalaza COX-2 analize u tkivima spojnica te na utjecaj duljine trajanja izloženosti Sunčevom zračenju na jačinu pozitivnih nalaza COX-2 promatranih tkiva spojnica.
2. HIPOTEZA

Dulja izloženost Sunčevom zračenju povećava incidenciju pozitivnih COX-2 nalaza u ispitivanim skupinama tkiva spojnica.
3. CILJ ISTRAŽIVANJA

Ispitati utječe li duljina izloženosti Sunčevom zračenju bitno na pozitivan COX-2 nalaz u promotranim tkivima spojnica.

Ispitati povezanost duljine izloženosti Sunčevom zračenju s jačinom pozitivnih nalaza u promotranim tkivima spojnica.
4. ISPITANICI I METODE

4.1. Ustroj studije

Riječ je o prospektivnoj case-control studiji s obzirom na to da je uzimanje anamnestičkih podataka preko Upitnika prijeoperativno i prikupljanje uzoraka tijekom navedenih operacija unaprijed planirano za svakog ispitanika (56), a case-control studija zato što su ispitanicima operiranima zbog pterigija (case) pridružene kontrole – ispitanici operirani zbog katarakte.

4.2. Ispitanici

4.2.1. Bolesnici

Prvu skupinu čini 119 (63 %) ispitanika operiranih zbog primarnog pterigija spojnice oka III. i IV. stupnja.

4.2.2. Kontrolna skupina

Drugu (kontrolnu) skupinu čini 70 (37 %) ispitanika operiranih zbog senilne katarakte. Isključni su kriteriji za obje skupine, zbog mogućnosti lažno pozitivnih nalaza COX-2, pacijenti s recidivirajućim pterigijem, drugim bolestima spojnice, nekim drugim očnim bolestima, upalnim očnim ili/sistemnim bolestima te pacijenti s lokalnom terapijom (antiglaukomska, antibiotska, antivirusna, antimikotska…) zbog mogućih nuspojava same terapije (npr. hiperemija, učinak konzervansa…). Isključeni su i ispitanici koji bi zbog protuupalnog učinka lokalne ili/sistemne terapije mogli dati lažno negativne COX-2 nalaze (npr. (ne)selektivni inhibitori COX-2, kortikosteroidi…).
4.3. Metode

Uzimanje uzoraka

Osim lokalnog anestetika, koji nema opisan nikakav učinak na rezultate analize na COX-2 aktivnost, nije apliciran nikakav lijek prije uzimanja samog uzorka. Za uzorke prve ispitivane skupine, tijekom operacije pterigija III. i IV. stupnja, uzeli smo odstranjeno tkivo pterigija i parni uzorak superotemporalne spojnice istog oka tako što smo uzeli dio transplantata spojnice koji koristimo tijekom zahvata za pokrivanje defekta nakon ablacije pterigija te se sam zahvat rutinski nastavio. Za uzorke druge skupine, nakon što je završio sam zahvat operacije katarkate, tj. kada je oko „zatvoreno“, kako bi se izbjegao intraoperativan rizik, uzet je isječak bulbarne spojnice.

Prikupljanje podataka – Upitnik

Opisani model izračuna iz literature (53, 55) iskoristili smo i uz pomoć anamnestičkih detaljnih podataka o izloženosti Sunčevom zračenju kroz cjeloživotno razdoblje, dobivenih iz Upitnika za svakog ispitanika. Ti su se podatci upotpunili podacima dobivenim iz Državnog hidrometeorološkog zavoda (DHMZ) za promatranu Osječko-baranjsku županiju i za promatrano razdoblje izloženosti. Tako smo dobili aproksimaciju individualne izloženosti Sunčevom zračenju za svakog ispitanika. Nakon prethodno usmeno informiranog pacijenta i njegova potpisanog pristanka (Prilog 1) na prikupljanje i pohranu podataka te uzimanje samog uzorka i njegovu analizu i pohranu, te nakon potpisivanja uobičajene Suglasnosti za pristanak na hospitalizaciju i medicinsku intervenciju (Prilog 2.1 i Prilog 2.2), preoperativno su prikupljeni podatci uz pomoć Upitnika (Prilog 3). On sadržava demografske podatke (dob, spol, zanimanje, stupanj stručne spreme), komorbiditet i detaljne podatke o cjeloživotnoj izloženosti Sunčevom zračenju u satima po danu po godini u promatranim pojedinim životnim razdobljima (ponuđeni su predloženi i slobodni opisni odgovori radi potrebe individualnog, što detaljnijeg, pristupa za što precizniji izračun individualnog kumulativnog izlaganja Sunčevom zračenju). Upitnici se primjenjuju pojedinačno, anonimno se vode pod lozinkom, sadržavaju većinom ponuđene odgovore, a za pitanja oko izloženosti Sunčevom zračenju i komorbiditetima i slobodne odgovore.
Prikupljanje meteoroloških podataka

Pohrana i standardizirana imunohistokemijska analiza uzoraka
Imunohistokemijskom analizom na COX-2 na Zavodu za sudsku medicinu i patologiju učinili smo analizu uzetih uzoraka spojnica ispitanika. Uzorci spojnice fiksirani su u formalinu te uloženi u parafin. Nakon toga uradili su se histološki presjeci koji su se deparafinizirali. Histološka analiza rađena je bojanjem presjeka hematoxilin eozinom.
Za imunohistokemijsko bojanje presjeci uzoraka bili su tretirani monoklonskim mišjim COX-2 protutijelima (1 : 100; M361701 MO A-HU, Dako). Tkivo humanog karcinoma kolona upotrijebljeno je kao pozitivna kontrola za imunobojanje. Negativnu kontrolu dobili smo izostavljanjem primarnih protutijelja. Intenzitet pozitivnog nalaza citoplazme površinskog višeslojnog pločastog epitela je skoriran:
0 – nema imunobojanja,
+ slabo bojanje (nekoliko je stanica pozitivno ili su stanice pozitivno obojane, razbacane),
++ srednje izraženo bojanje,
+++ jako izraženo bojanje (difuzno pozitivno bojanje kroz cijelo tkivo).
Statističke metode

5. REZULTATI

5.1. Klimatski faktori i elementi od 1935. do 2014. u Osječko-baranjskoj županiji

Osječko-baranska županija (OBŽ) prostire se na 4.152 km² na sjeveroistoku Hrvatske i obuhvaća sjeveroistočnu Slavoniju i Baranju. Položaj OBŽ-a: 45º 32' sjever i 18º 44' istok. Nadmorska je visina 90 m iznad razine mora. Klima područja Osječko-baranske županije određena je mješavinom utjecaja euroazijskog kopna, Atlantika i Sredozemlja.

Prema Koeppenovoj klasifikaciji (52), riječ je o umjereno toploj, kišnoj klimi, bez značajnijih sušnih razdoblja, s oborinama jednoliko raspodijeljenima tijekom godine. Prosječna temperatura iznosi 11 ºC (u proljeće 11 ºC, u ljeto 21 ºC, u jesen 11,8 ºC, zimi 0,2 ºC).

Na osnovi prikaza o trajanju sijanja sunca (trajanju obasjavanja izravnim Sunčevim zračenjem; mjereno heliografom), srednje trajanje sijanja sunca (od 1958. do 2014. godine) iznosi 1.886 sati godišnje (interkvartilnog raspona 1.737 – 2.028) godišnje, a srednjeg pomičnog petogodišnjeg prosjeka 1.879 sati godišnje (interkvartilnog raspona 1.787 – 2.041) sati sijanja sunca (Slika 5.1.).

Slika 5.1. Vremenska se rijetka sati sijanja sunca s pomičnim petogodišnjim prosjekom sati sijanja sunca za godinu i pridruženim linearnim trendom od 1958. do 2014. godine

(Podaci iz Državnog hidrometeorološkog zavoda,
http://klima.hr/razno.php?id=usluge_podaci_proizvodi¶m=zahtjevi)

Središnje odstupanje od pomičnog petogodišnjeg prosjeka iznosi -5 sati (interkvartilnog raspona -89 do 72 sata) u rasponu od -101 do 276 sati sijanja sunca tijekom promatranog razdoblja (Slika 5.2.).

Broj vedrih dana na području Osječko-baranjske županije tijekom promatranog razdoblja iznosi 71 (interkvartilnog raspona od 61 do 79 dana) u rasponu od 41 do 113 dana, a pomični je petogodišnji prosjek vedrih dana 70,6 (interkvartilnog raspona od 66 do 75 dana), u rasponu od minimalno 55 do 86 dana. Srednje odstupanje od pomičnoga petogodišnjega prosjeka vedrih dana iznosi -1 dan (interkvartilnog raspona -8,6 do 8 dana) u rasponu od -24 do 31 dan (Slika 5.3.).

Slika 5.3. Vremenska serija broja vedrih dana s pomičnim petogodišnjim prosjekom za godinu i pridruženim linearnim trendom od 1935. do 2014. godine (Podaci iz Državnog hidrometeorološkog zavodahttp://klima.hr/razno.php?id=usluge_podaci_proizvodi¶m=zahtjevi)

Srednji broj oblačnih dana u Osječko-baranjskoj županiji od 1935. do 2014. godine iznosi 107 dana (interkvartilnog raspona od 93 do 115 dana), a pomičnoga petogodišnjeg prosjeka 109,6
dana (interkvartilnog raspona od 92,4 do 119 dana) uz trend smanjenja broja oblačnih dana. Srednje je odstupanje od pomičnoga petogodišnjeg prosjeka oblačnih dana -1 dan (interkvartilnog raspona -9,8 do 7 dana) u rasponu od -24,8 do 28 dana (Slika 5.4).

Srednja oblačnost od 1935. do 2014. godine iznosi 5,5 (interkvartilnog raspona od 5,3 do 5,7), a pomičnog petogodišnjeg prosjeka 5,5 (interkvartilnog raspona od 5,3 do 5,8 dana). Srednje je odstupanje od pomičnoga petogodišnjeg prosjeka -0,08 (interkvartilnog raspona od -0,28 do 0,22) u rasponu od -11 do 39,5, s trendom opadanja (Slika 5.5)

5.2. Osnovna obilježja ispitanika

Istraživanje je provedeno na 189 ispitanika, od kojih je 70 (37 %) operirano rutinski zbog senilne katarakte bez drugih očnih bolesti, a 119 (63 %) ih je operirano zbog primarnog pterigija spojnice oka.

Središnja je (medijan) dob ispitanika 66 godina (interkvartilnog raspona 57 do 77 godina). Značajno su stariji ispitanici kontrolne skupine (Mann Whitney U test, P < 0,001) (Tablica 5.1).

Tablica 5.1. Srednja dob ispitanika prema skupinama

<table>
<thead>
<tr>
<th></th>
<th>Medijan (interkvartilni raspon)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolna</td>
<td>76 (64 – 80)</td>
<td></td>
</tr>
<tr>
<td>Pterigij</td>
<td>63 (54 – 72)</td>
<td></td>
</tr>
<tr>
<td>Ukupno</td>
<td>66 (57 – 77)</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

*Mann Whitney U test

Prema spolu, nešto je više žena, njih 104 (55 %). Značajno je više ispitanika starijih od 70 godina u kontrolnoj skupini (χ² test, P < 0,001). U ruralnoj sredini živi 115 (63,2 %) ispitanika. Prema razini obrazovanja, 91 (51,1 %) ih je nekvalificiranih radnika, zatim ispitanika sa srednjom stručnom spremom, njih 74 (41,6 %).

Na otvorenom radi 75 (47,5 %) ispitanika. Većinom su poljoprivrednici, vozači, šumari, građevinski radnici. U zatvorenim prostorima radi 70 (44,3 %) ispitanika (službenici, kućanice, nezaposleni, umirovljenici i osobe koje obavljaju zanate vezane uz zatvorene prostore), a doticaj s kemikalijama, prašinom i visokim temperaturama navodi 13 (8,2 %) ispitanika.

Njihova su zanimanja: ložač velikih peći, pekar, radnik u tekstilnoj i kemijskoj industriji (Tablica 5.2).

Tablica 5.2. Obilježja ispitanika prema skupinama

<table>
<thead>
<tr>
<th>Spol</th>
<th>Broj (%) ispitanika</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
</tr>
<tr>
<td>Muškarci</td>
<td>27 (38,6)</td>
<td>58 (48,7)</td>
</tr>
<tr>
<td>Žene</td>
<td>43 (61,4)</td>
<td>61 (51,3)</td>
</tr>
</tbody>
</table>

0,23*
Ispitanici kontrolne skupine značajno češće imaju arterijsku hipertenziju (HTA), njih 51 (72,9 %) (Fisherov egzaktni test, P < 0,001), dijabetes ima 21 ispitanik (30 %) (Fisherov egzaktni test, P < 0,001), u stanju nakon moždanog bilo je 9 ispitanika (12,9 %) (Fisherov egzaktni test, P = 0,01) te ih je akutni infarkt miokarda (AIM) imalo 5 (7,1 %) ispitanika (Fisherov egzaktni test, P = 0,02) (Tablica 5.3).

Tablica 5.3. Ispitanici prema komorbiditetima i skupinama
<table>
<thead>
<tr>
<th>Broj (%) ispitanika</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
</tr>
<tr>
<td>Arterijska hipertenzija (HTA)</td>
<td>51 (72,9)</td>
</tr>
<tr>
<td>Kardiomiopatija (CMP)</td>
<td>7 (10)</td>
</tr>
<tr>
<td>Karcinom maternice</td>
<td>1 (1,4)</td>
</tr>
<tr>
<td>Kronična opstruktivna plućna bolest (KOPB)</td>
<td>3 (4,3)</td>
</tr>
<tr>
<td>Hipotireoza</td>
<td>1 (1,4)</td>
</tr>
<tr>
<td>Šećerna bolest (DM)</td>
<td>21 (30)</td>
</tr>
<tr>
<td>Stanje nakon moždanog udara (St. post ICV)</td>
<td>9 (12,9)</td>
</tr>
<tr>
<td>Angina pectoris (AP)</td>
<td>4 (5,7)</td>
</tr>
<tr>
<td>Akutni infarkt miokarda (AIM)</td>
<td>5 (7,1)</td>
</tr>
<tr>
<td>Hiperlipidemija</td>
<td>0</td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

5.3. Izloženost Sunčevom zračenju i nalaz antitijela na COX-2

Sunčevom zračenju izložen je 151 ispitanik (79,9 %), a pozitivan nalaz na antitijela COX-2 ima 68 (45 %) ispitanika. Nema značajne razlike u izloženosti Sunčevom zračenju i analizi na antitijela COX-2 prema skupinama (Tablica 5.4).

Tablica 5.4. Raspodjela ispitanika prema izloženosti Sunčevom zračenju, nalazu COX-2 prema skupinama
<table>
<thead>
<tr>
<th>Izloženost Sunčevom zračenju</th>
<th>Broj (%) ispitanika</th>
<th></th>
<th></th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
<td>Ukupno</td>
<td></td>
</tr>
<tr>
<td>Izloženost Sunčevom zračenju</td>
<td>52 (74,3)</td>
<td>99 (83,2)</td>
<td>151 (79,9)</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Analiza na antitijela COX-2

<table>
<thead>
<tr>
<th></th>
<th>Broj (%) ispitanika</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
<td>Ukupno</td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>30 (52,6)</td>
<td>53 (56,4)</td>
<td>83 (55)</td>
<td></td>
</tr>
<tr>
<td>pozitivno</td>
<td>27 (47,4)</td>
<td>41 (43,6)</td>
<td>68 (45)</td>
<td></td>
</tr>
</tbody>
</table>

Ukupno

<table>
<thead>
<tr>
<th></th>
<th>Broj (%) ispitanika</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
<td>Ukupno</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57 (100)</td>
<td>94 (100)</td>
<td>151 (100)</td>
<td></td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

Pozitivan nalaz na antitijela COX-2 imaju 34 (54,8 %) ispitanika muškog, a 34 (38,2 %) ispitanice ženskog spola. Nema značajne razlike u nalazu COX-2 prema spolu i skupinama (Tablica 5.5).

Tablica 5.5. Ispitanici prema COX-2 nalazu, prema skupinama i spolu

<table>
<thead>
<tr>
<th>Analiza antitijela na COX-2</th>
<th>Broj (%) ispitanika</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
<td>Ukupno</td>
<td></td>
</tr>
<tr>
<td>Muškarci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>11 (52,4)</td>
<td>17 (41,5)</td>
<td>28 (45,2)</td>
<td></td>
</tr>
<tr>
<td>pozitivno</td>
<td>10 (47,6)</td>
<td>24 (58,5)</td>
<td>34 (54,8)</td>
<td></td>
</tr>
<tr>
<td>Ukupno</td>
<td>21 (100)</td>
<td>41 (100)</td>
<td>62 (100)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Žene</th>
<th>Broj (%) ispitanika</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
<td>Ukupno</td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>19 (52,8)</td>
<td>36 (67,9)</td>
<td>55 (61,8)</td>
<td></td>
</tr>
<tr>
<td>pozitivno</td>
<td>17 (47,2)</td>
<td>17 (32,1)</td>
<td>34 (38,2)</td>
<td></td>
</tr>
<tr>
<td>Ukupno</td>
<td>36 (100)</td>
<td>53 (100)</td>
<td>89 (100)</td>
<td></td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

U skupini ispitanika do 60 godina pozitivan nalaz na antitijela COX-2 ima 20 (39,2 %) ispitanika, u skupini ispitanika od 61 do 70 godina njih 14 (41,2 %), u doboj skupini od 71 do 80 godina pozitivan nalaz imala su 23 (53,5 %) ispitanika, a kod ispitanika starijih od 80 godina pozitivan nalaz imalo je 11 (47,8 %) ispitanika. Nema značajne razlike u broju ispitanika s pozitivnim nalazom na antitijela COX-2 prema doboj skupinama (Tablica 5.6).
Tablica 5.6. Ispitanici prema Cox nalazu, prema skupinama i prema dobnim skupinama

<table>
<thead>
<tr>
<th></th>
<th>Analiza antitijela na COX-2</th>
<th>Broj (%) ispitanika</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kontrolna</td>
<td>Pterigiji</td>
</tr>
<tr>
<td>do 60 godina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>5 (55,6)</td>
<td>26 (61,9)</td>
<td>31 (60,8)</td>
</tr>
<tr>
<td>pozitivno</td>
<td>4 (44,4)</td>
<td>16 (38,1)</td>
<td>20 (39,2)</td>
</tr>
<tr>
<td>Ukupno</td>
<td>9 (100)</td>
<td>42 (100)</td>
<td>51 (100)</td>
</tr>
<tr>
<td>61 – 70 godina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>6 (60)</td>
<td>14 (58,3)</td>
<td>20 (58,8)</td>
</tr>
<tr>
<td>pozitivno</td>
<td>4 (40)</td>
<td>10 (41,7)</td>
<td>14 (41,2)</td>
</tr>
<tr>
<td>Ukupno</td>
<td>10 (100)</td>
<td>24 (100)</td>
<td>34 (100)</td>
</tr>
<tr>
<td>71 – 80 godina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>9 (45)</td>
<td>11 (47,8)</td>
<td>20 (46,5)</td>
</tr>
<tr>
<td>pozitivno</td>
<td>11 (55)</td>
<td>12 (52,2)</td>
<td>23 (53,5)</td>
</tr>
<tr>
<td>Ukupno</td>
<td>20 (100)</td>
<td>23 (100)</td>
<td>43 (100)</td>
</tr>
<tr>
<td>više od 81 godine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativno</td>
<td>10 (55,6)</td>
<td>2 (40)</td>
<td>12 (52,2)</td>
</tr>
<tr>
<td>pozitivno</td>
<td>8 (44,4)</td>
<td>3 (60)</td>
<td>11 (47,8)</td>
</tr>
<tr>
<td>Ukupno</td>
<td>18 (100)</td>
<td>5 (100)</td>
<td>23 (100)</td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

Unutar kontrolne skupine pozitivan nalaz na antitijela COX-2 ima najviše ispitanika u dobi od 71 do 80 godina, njih 20 (35,1 %), a u skupini s primarnim pterigijem također ih je najviše u toj dobnoj skupini, 23 (24,5 %) ispitanika (Tablica 5.7).

Tablica 5.7. Ispitanici prema nalazu na antitijela COX-2 i prema dobnim skupinama unutar kontrolne skupine i skupine s primarnim pterigijem
<table>
<thead>
<tr>
<th></th>
<th>Broj (%) ispitanika prema COX-2 nalazu</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativan</td>
<td>Pozitivan</td>
</tr>
<tr>
<td>Kontrolna skupina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>do 60 godina</td>
<td>5 (16,7)</td>
<td>4 (14,8)</td>
</tr>
<tr>
<td>61 – 70</td>
<td>6 (20)</td>
<td>4 (14,8)</td>
</tr>
<tr>
<td>71 – 80</td>
<td>9 (30)</td>
<td>11 (40,7)</td>
</tr>
<tr>
<td>81 i više godina</td>
<td>10 (33,3)</td>
<td>8 (29,6)</td>
</tr>
<tr>
<td>Ukupno</td>
<td>30 (100)</td>
<td>27 (100)</td>
</tr>
</tbody>
</table>

Pterigij			
do 60 godina	26 (49,1)	16 (39)	42 (44,7)
61 – 70	14 (26,4)	10 (24,4)	24 (25,5)
71 – 80	11 (20,8)	12 (29,3)	23 (24,5)
81 i više godina	2 (3,8)	3 (7,3)	5 (5,3)
Ukupno	53 (100)	41 (100)	94 (100)

χ² test
Srednji broj godina izloženosti iznosi 45 godina (interkvartilnog raspona 36 do 48 godina), značajno više kod ispitanika kontrolne skupine (Mann Whitney U test, P = 0,01), kao i broj sati izloženosti, koji je 60.567 sati (interkvartilnog raspona 4.841 do 73.029 sati) kod ispitanika kontrolne skupine (Mann Whitney U test, P = 0,006), međutim nema značajne razlike u broju sati izloženosti prema godinama izloženosti i prema skupinama (Tablica 5.8 i Slika 5.6).
Tablica 5.8. Srednja izloženost Sunčevom zračenju u godinama, satima i broj sati po godini izloženosti prema skupinama

<table>
<thead>
<tr>
<th></th>
<th>Medijan (interkvartilni raspon)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna</td>
<td>Pterigij</td>
</tr>
<tr>
<td>Izloženost Sunčevom zračenju (godina)</td>
<td>46 (41 - 50)</td>
<td>40 (35 - 47)</td>
</tr>
</tbody>
</table>

21
Slika 5.6. Srednja izloženost Sunčevom zračenju u godinama (P = 0,01), ukupan broj sati izloženosti (P = 0,006) prema skupinama

Nema imunobojanja kod 82 (54,3 %) ispitanika, slabo je bojanje kod njih 29 (19,2 %), srednje izraženo bojanje kod njih 24 (15,9 %), a jako izraženo bojanje kod 16 (10,6 %) ispitanika, bez značajne razlike prema skupinama (kontrolna i pterigij) (Tablica 5.9)

Tablica 5.9. Ispitanici prema nalazu na antitijela na COX-2 kontrolne skupine i nalazu u tkivu pterigija

<table>
<thead>
<tr>
<th>Analiza antitijela na COX-2</th>
<th>Broj (%) ispitanika</th>
<th></th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolna skupina</td>
<td>Tkivo pterigija</td>
<td>Ukupno</td>
</tr>
<tr>
<td>nema imunobojanja</td>
<td>30 (51,7)</td>
<td>52 (55,9)</td>
<td>82 (54,3)</td>
</tr>
<tr>
<td>+</td>
<td>14 (24,1)</td>
<td>15 (16,1)</td>
<td>29 (19,2)</td>
</tr>
<tr>
<td>(slabo bojanje)</td>
<td>7 (12,1)</td>
<td>17 (18,3)</td>
<td>24 (15,9)</td>
</tr>
<tr>
<td>++</td>
<td>7 (12,1)</td>
<td>9 (9,7)</td>
<td>16 (10,6)</td>
</tr>
<tr>
<td>(srednje izraženo bojanje)</td>
<td></td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(jako izraženo bojanje)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Značajno je slaganje u vrijednosti nalaza u tkivu pterigija i u parnom uzorku spojnice (McNemar-Bowkerov test, \(P < 0,001 \)) (Tablica 5.10).

Tablica 5.10. Razlike u vrijednosti nalaza u tkivu pterigija i u parnom uzorku spojnice

<table>
<thead>
<tr>
<th>Parni uzorak spojnice</th>
<th>Tkivo pterigija</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativno</td>
<td>+</td>
</tr>
<tr>
<td>negativno</td>
<td>51 (100)</td>
<td>1/15</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>14/15</td>
</tr>
<tr>
<td>++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ukupno</td>
<td>51 (100)</td>
<td>15/15</td>
</tr>
</tbody>
</table>

*Mc Nemar–Bowker test

Kod ispitanika s pozitivnim nalazom na antitijela COX-2 značajno je veća izloženost Sunčevom zračenju u godinama, srednje vrijednosti 47 godina (interkvartilnog raspona 40 do 50 godina) u rasponu od 17 do 65 godina (Mann Whitney U test, \(P < 0,001 \)), izloženost Sunčevom zračenju prema satima, srednje vrijednosti 70.045 sati (interkvartilnog raspona 55.075 do 77.056 sati) (Mann Whitney U test, \(P < 0,001 \)), i broju sati po godini izloženosti, srednje vrijednosti 1.552 sata (interkvartilnog raspona 1.535 do 1.562 sata) (Mann Whitney U test, \(P < 0,001 \)) (Tablica 5.11 i Slika 5.7).
Tablica 5.11. Srednje vrijednosti izloženosti Sunčevom zračenju (godine, sati, sati po godini izloženosti) prema vrijednosti nalaza na antitijela na COX-2

<table>
<thead>
<tr>
<th></th>
<th>Medijan (interkvartilni raspon)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativno</td>
<td>Pozitivno</td>
</tr>
<tr>
<td>Izloženost Sunčevom</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>zračenju (godina)</td>
<td>(31 – 45)</td>
<td>(40 – 50)</td>
</tr>
<tr>
<td></td>
<td>4.840</td>
<td>70.045</td>
</tr>
<tr>
<td>Broj sati izloženosti</td>
<td>(558 – 7.812)</td>
<td>(55.075 – 77.056)</td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>1.552</td>
</tr>
<tr>
<td>Broj sati po godini</td>
<td>(84 – 177)</td>
<td>(1.535 – 1.562)</td>
</tr>
</tbody>
</table>

*Mann Whitney U test
Slika 5.7. Vrijednosti izloženosti Sunčevom zračenju u godinama (P < 0,001), ukupnih sati izloženosti (P < 0,001) i broj sati po godini izloženosti (P < 0,001) prema vrijednosti nalaza COX-2
Kod pozitivnog nalaza antitijela na COX-2 značajno su više vrijednosti izloženosti Sunčevom zračenju u godinama kod ispitanika koji rade na otvorenom, srednje vrijednosti 47 godina (interkvartilnog raspona 39 – 50 godina) (Mann Whitney U test, P = 0,04), i kod onih koji rade u doticaju s kemikalijama, prašinom i visokim temperaturama (Mann Whitney U test, P = 0,02), a značajno je manje onih koji rade u zatvorenom prostoru (Mann Whitney U test, P = 0,005). Značajno su više vrijednosti broja sati izloženosti prema godini izloženosti kod onih koji rade na otvorenom (Mann Whitney U test, P = 0,02), koji su izloženi kemikalijama, prašini i visokim temperaturama (Mann Whitney U test, P = 0,02), a značajno više ispitanika koji rade u zatvorenom prostoru ima negativan nalaz (Mann Whitney U test, P < 0,001) (Tablica 5.12, Slika 5.8 i Slika 5.9).

Tablica 5.12. Srednje vrijednosti izloženosti Sunčevom zračenju (godine, sati izloženosti po godini izloženosti) prema vrijednosti nalaza na antitijela na COX-2

<table>
<thead>
<tr>
<th>Izloženost Sunčevom zračenju (godine)</th>
<th>Medijan (interkvartilni raspon)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad na otvorenom (N = 53)</td>
<td>42 (36 – 46)</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>47 (39 – 50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 (38 – 50)</td>
<td></td>
</tr>
<tr>
<td>Rad u zatvorenim prostorima (N = 57)</td>
<td>45 (39 – 49)</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>40 (30 – 45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 (33 – 46)</td>
<td></td>
</tr>
<tr>
<td>Doticaj s kemikalijama, prašinom, visokim temperaturama (N = 9)</td>
<td>41 (33 – 46)</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>53 (50 – 62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 (38 – 52)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Broj sati po godini izloženosti</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad na otvorenom (N = 53)</td>
<td>173 (84 – 1.551)</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>1.552 (1.440 – 1.569)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.539 (132 – 1.565)</td>
<td></td>
</tr>
<tr>
<td>Rad u zatvorenim prostorima (N = 57)</td>
<td>1.548 (654 – 1.557)</td>
<td>< 0,001</td>
</tr>
<tr>
<td></td>
<td>173 (76 – 175)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>174 (80 – 1.536)</td>
<td></td>
</tr>
<tr>
<td>Doticaj s kemikalijama, prašinom, visokim temperaturama (N = 9)</td>
<td>14 (13 - 31)</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>1.562 (1.552 - 1.567)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84 (73 - 1.557)</td>
<td></td>
</tr>
</tbody>
</table>

*Mann Whitney U test
Slika 5.8. Vrijednosti izloženosti Sunčevom zračenju (godine) prema Cox-2 nalazu u odnosu na ispitanike koji rade na otvorenom (P = 0,04), na one koji rade u zatvorenim prostorima (P = 0,005) i na ispitanike koji su u doticaju s kemikalijama, prašinom ili visokim temperaturama (P = 0,02)

Slika 5.9. Broj sati po godini izloženosti prema Cox-2 nalazu u odnosu na ispitanike koji rade na otvorenom (P = 0,02), na one koji rade u zatvorenim prostorima (P < 0,001) i na ispitanike koji su u doticaju s kemikalijama, prašinom ili visokim temperaturama (P = 0,02)

Spearmanovim koeficijentom korelacije ocijenili smo povezanost godina izloženosti i broja sati izloženosti po godini izloženosti s jačinom nalaza na antitijela na COX-2. Slabija je, ali
značajna, povezanost godina izloženosti (Spearmanov koeficijent korelacije $\rho = 0,173 \ P = 0,04$) s jačinom nalaza dok je jako dobra povezanost broja sati izloženosti po godini izloženosti, odnosno porastom sati izloženosti povećava se i jačina nalaza antitijela na COX-2 (Spearmanov koeficijent korelacije $\rho = 0,527 \ P < 0,001$) (Tablica 5.13).

Tablica 5.13. Povezanosti godina i sati izloženosti s jačinom nalaza antitijela na COX-2

<table>
<thead>
<tr>
<th>Jačina COX-2 nalaza</th>
<th>Spearmanov koeficijent korelacije (ρ)</th>
<th>P vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godine izloženosti</td>
<td>0,173</td>
<td>0,04</td>
</tr>
<tr>
<td>Broj sati po godini izloženosti</td>
<td>0,527</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

5.4. Uloga ispitivanih parametara u predviđanju pozitivnog nalaza antitijela na COX-2 (regresijska analiza)

<table>
<thead>
<tr>
<th>Parametar</th>
<th>B</th>
<th>Standardna pogreška</th>
<th>Wald</th>
<th>P</th>
<th>Omjer vjerojatnosti (Exp β)</th>
<th>95% interval pouzdanosti za Exp β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spol</td>
<td>-0,675</td>
<td>0,336</td>
<td>4,044</td>
<td>0,04</td>
<td>0,509</td>
<td>0,264 – 0,983</td>
</tr>
<tr>
<td>Dob ispitanika</td>
<td>0,023</td>
<td>0,013</td>
<td>3,202</td>
<td>0,07</td>
<td>1,024</td>
<td>0,998 – 1,050</td>
</tr>
<tr>
<td>Trajanje izloženosti Sunčevom zračenju u godinama</td>
<td>0,094</td>
<td>0,024</td>
<td>15,931</td>
<td>< 0,001</td>
<td>1,099</td>
<td>1,049 – 1,151</td>
</tr>
</tbody>
</table>
Kao model promatraši smo prediktore (dob ispitanika i trajanje izloženosti Sunčevom zračenju u godinama i satima izloženosti prema godinama izloženosti), koji je u cijelosti statistički značajan, $\chi^2 = 82,5$ (df $= 3$ $P < 0,001$), što pokazuje da može razlikovati ispitanike po kliničkoj slici pozitivnog nalaza antitijela na COX-2, i u cjelini objašnjava između 44,5 % (po Cox & Snell) i 59,6 % (po Negelkerke) varijance prisutnosti pozitivnog nalaza, i točno klasificira 85 % slučajeva.

Najjači je prediktor trajanje izloženosti Sunčevom zračenju u godinama, zatim izloženost Sunčevom zračenju u satima izloženosti prema godinama izloženosti (Tablica 5.15).

Tablica 5.15. Predviđanje vjerojatnosti da će se kod ispitanika razviti klinička slika pozitivnog nalaza antitijela na COX-2 (multivarijatna regresijska analiza)

<table>
<thead>
<tr>
<th>Parametar</th>
<th>β</th>
<th>Standardna pogreška</th>
<th>Wald</th>
<th>P</th>
<th>Omjer vjerojatnosti (Exp β)</th>
<th>95% interval pouzdanosti za Exp β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dob ispitanika</td>
<td>-0,067</td>
<td>0,029</td>
<td>5,233</td>
<td>0,02</td>
<td>0,935</td>
<td>0,883 – 0,990</td>
</tr>
<tr>
<td>Trajanje izloženosti Sunčevom zračenju u godinama</td>
<td>0,155</td>
<td>0,047</td>
<td>10,746</td>
<td>0,001</td>
<td>1,168</td>
<td>1,064 – 1,281</td>
</tr>
</tbody>
</table>
5.5 Uloga ispitivanih parametara u predviđanju pozitivnog nalaza antitijela na COX-2 (ROC analiza)

Metoda ROC krivulje odabrana je kao jednostavan način procjene razlike pojedinog pokazatelja između skupine ispitanika s obzirom na kliničku sliku pozitivnog nalaza antitijela na COX-2, a određuje se na osnovi specifičnosti i senzitivnosti.

Da bi se procijenila vrijednost pojedinih parametara koje smo logističkom regresijom dobili da značajno doprinose modelu, korištena je metoda izračuna ROC krivulje kojom se stupnjevito mijenjaju vrijednosti koje razlučuju ispitanike s pozitivnim nalazom antitijela na COX-2 i negativnim nalazom. Mijenjana je točka razlučivanja za pojedinu skupinu ispitanika (engl. cut-off point) kako bi se stvaranjem ROC krivulje moglo objektivno utvrditi koja vrijednost najbolje razlučuje uspoređene skupine.

U našim podacima, s obzirom na pozitivan nalaz antitijela na COX-2, nešto je bolji dijagnostički pokazatelj izloženost Sunčevom zračenju u satima izloženosti prema godini izloženosti (senzitivnost = 80,9, specifičnost = 85,7, P < 0,001) (Tablica 5.16 i Slika 5.6).

Tablica 5.16. Parametri ROC krivulje promatranih parametara s obzirom na pozitivan nalaz antitijela na COX-2

<table>
<thead>
<tr>
<th>Parametri</th>
<th>Površina ispod krivulje (95%CI)</th>
<th>Senzitivnost (95% CI)</th>
<th>Specifičnost (95%CI)</th>
<th>Točka razlučivanja (cut off)</th>
<th>P</th>
<th>Youden indeks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izloženost Sunčevom zračenju u satima izloženosti</td>
<td>0,819 (0,745 – 0,879)</td>
<td>80,9 (69,1 – 89,8)</td>
<td>85,7 (75,9 – 98,6)</td>
<td>> 183,7 < 0,001</td>
<td>66,6</td>
<td></td>
</tr>
<tr>
<td>Trajanje izloženosti Sunčevom zračenju u godinama</td>
<td>0,717 (0,635 – 0,790)</td>
<td>57,14 (44 – 69,5)</td>
<td>77,9 (67 – 86,6)</td>
<td>> 45 < 0,001</td>
<td>35,04</td>
<td></td>
</tr>
</tbody>
</table>
Slika 5.10. ROC analiza senzitivnosti, specifičnosti i graničnih vrijednosti za promatrane parametre s obzirom na kliničku sliku COX-2
6. RASPRAVA

Iako studije ukazuju na to da akutno izlaganje Sunčevu zračenju dovodi do pojačane ekspresije COX-2 (58), za razvoj kliničke slike pterigija potrebna je dugotrajna izloženost Sunčevom zračenju. Pregled epidemioloških studija od 2012. do 2013. godine (59) dokazuje snažnu vezu između nekih očnih bolesti (pterigij, klimatska “droplet” keratopatija, kortikalna katarakta, bazeocelularni i planocelularni karcinom vjeđa) i kronične izloženosti Sunčevom zračenju. Studije (60) koje su proučavale učinak Sunčevog zračenja na histološku analizu promatranih tkiva kože tako što su uspoređivalo histološki nalaz s podatcima o izlaganju suncu (opekline, sunčanje, provedeno vrijeme na otvorenom) ukazuju na to da akutna, povremena izlaganja nisu bila značajno povezana s degenerativnim histološkim promjenama. Za razliku od njih, kronično/kumulirano Sunčevo zračenje reflektiralo je uočene histološke promjene. Analogno je s opisanim histološkim promjenama na površini oka.

Mnoge epidemiološke studije ukazuju na problem točne procjene višegodišnje retrogradne individualne izloženosti Sunčevom zračenju. Tako ova studija, uvidom u opisani model u literaturi (53, 54, 55), kao surogat koristi aproksimativne izračune. U izračunu uzima podatke okolišnog Sunčevog zračenja (vezano uz geografski smještaj) iz podataka Državnog hidrometeorološkog zavoda (DHMZ) i podataka iz Upitnika o cjeloživotnoj ispitanikovoj izloženosti.

Drugi opisani rizični faktori za razvoj pterigija mogu se tumačiti kroz učinak ukupnog kumuliranog Sunčevog zračenja zbog životnog stila (rad na otvorenom, spol, prebivalište, edukacija). Tako rad na otvorenom direktno govori o povezanosti s dugotrajnom izloženosti. U većini se studija navodi povišen rizik kod muškog spola, što je opet vezano uz poslove ili aktivnosti koje tradicionalno u određenim populacijama vežemo za taj spol te tako indirektno i za izloženost Sunčevom zračenju (motoristi u Nigeriji 19,3 % (61), ribari u Brazilu 36,6% (62)). Kao prilog tome, postoje i neke studije iz Tibeta u kojima je rizičan faktor ženski spol jer su žene tradicionalno obavljale aktivnosti vezane uz dugotrajnu izloženost Sunčevom zračenju (63).
Životni stil individualno utječe na mjesto prebivališta jer se pojedinac neovisno o ruralnoj ili urbanoj sredini može više ili manje izlagati u odnosu na procijenjenu populacijsku izloženost Sunčevom zračenju. Zato je važan individualan pristup izračunu gdje se poštuju individualne osobine vezane uz izlaganje zračenju (npr. navike, aktivnosti, radni uvjeti…). U ovoj smo studiji primijenili individualni pristup izračunu.

Sam urbani stil života može modulirati očekivanu prevalenciju u određenoj populaciji s obzirom na geografski položaj (klima, nadmorska visina, blizina ekvаторa…), kao što je primjer u studiji u Singapuru (64). Tu je prevalencija u kineskoj populaciji starijoj od 40 godina 6,9 %, znatno manja od očekivane s obzirom na suptropsku klimu. Dakle, urbani stil života, koji je obično vezan uz boravak u zatvorenim prostorima, ima protektivan učinak za razvoj pterigija. Slično je i za urbanu populaciju grada Victoriju u Australiji (65), gdje je prevalencija relativno niska 2,8%, dok ruralna populacija Aborigina u Australiji starijih od 40 godina (9) ima visoku prevalenciju od 44%.

Također se u većim gradovima pretpostavlja zaštitni utjecaj značajnog zagađenja zraka za nastanak pterigija. Studija u Pekingu (66, 67) prikazuje relativno malu prevalenciju pterigija u gradskoj populaciji u odnosu na ruralne sredine, od 2 %. Kao razlog tome opisuje se veća apsorpcija Sunčevog zračenja u kumuliranim plinovima u kombinaciji s funkcioniranjem u pretežno zatvorenim prostorima, što je povezano s gradskim stilom života i sa samim nepovoljinim okolišnim uvjetima koji utječu na smanjeno vrijeme boravka na otvorenom. Slično je tumačenje niže naobrazbe, koja je češće vezana uz poslove koji se obavljaju na otvorenom. Niža naobrazba vezana je uz dugotrajno višegodišnje izlaganje Sunčevom zračenju, ali i uz druge čimbenike (za posao vezana izloženost prašini, kroničnom isušenju i drugim iritansima).

Sve te činjenice ukazuju na veliki potencijal preventivnih mjera zaštite od izlaganja Sunčevom zračenju. Tako još studije iz 1999. ukazuju na to da je razvoj pterigija snažno vezan uz izlaganje suncu. Utjecaj se ne mijenja uz neku određenu životnu dob, ali pokazuje se kumulativan učinak izlaganja Sunčevom zračenju tako da prevalencija i izraženost kliničke slike napreduje s porastom životne dobi. Zato se nameće zaključak o važnosti preventivnih mjera vezanih uz bilo koju životnu dob (68), uz preporuku što ranije uvođenja, još u ranom djetinjstvu (69).
Studije koje su mjerile učinak nošenja zaštitnih naočala pokazale su da, osim UV filtera koji
naočale moraju imati, djelotvornost zaštite ovisi i o obliku, veličini i položaju naočala na nosu,
tj. o mogućnosti postraničnog prolaza UV zračenja (70). Zato danas postoje određeni zaštitni
faktori za oči (engl. eye-sun protection factor(E-SPF)) (71) koji su analogni zaštitnim faktorima
za kožu (engl. sun protection factor (SPF)).

Međutim ograničena je spoznaja učinka sredstava za UV zaštitu očiju u dugoročnim studijama
(npr. naočale / kontaktne leće s UV zaštitom, kape, šeširi, odjeća…). Za prikaz učinka trebalo
bi izraditi dugotrajne prospektivne studije u strogo kontroliranim uvjetima i s točno definiranom
zaštitom. Retrogradno su podatci nepouzdani i nedovoljno standardizirani i ne mogu se s
velikom preciznošću prikupiti i analizirati s obzirom na to da se prikupljaju anamnestički
(subjektivno) te se ne može egzaktno odrediti kvantiteta nošenja i kvaliteta efekta navedenih
zaštitnih sredstava. S obzirom na to da se podatci o dugotrajnoj individualnoj UV zaštiti ne
mogu standardizirati u analiziranim skupinama ispitanika, te parametre u ovoj studiji nismo
analizirali zbog mogućih nepouzdanih i krivo shvaćenih rezultata.

U literaturi se opisuje širok raspon pozitivnih nalaza tkiva spojnica na COX-2 antitijela. Postoji
također veća ili manja razlika u rezultatima između kontrolne grupe i grupe pterigija: od 83 %
pozitivnih nalaza u tkivu pterigija u odnosu na kontrolu, koja je 100 % negativna (35), do
jednako (30%) pozitivnih nalaza u primarnim pterigijima i kontrolama (72). Tako i u ovoj
studiji u rezultatima nema značajne razlike u izloženosti Sunčevom zračenju i analizi COX-2
aktivnosti prema skupinama (Tablica 5.4). Ekspresija COX-2 pozitivna je u tkivima pterigija
43,6 % i u normalnim spojnicama 47,4 %.

U studiji ispitanici kontrolne skupine značajno češće imaju arterijsku hipertenziju (HTA), njih
51 (72,9 %) (Fisherov egzaktni test, P < 0,001), dijabetes ima 21 ispitanik (30 %) (Fisherov
egzaktni test, P < 0,001), stanje nakon moždanog udara (ICV) ima 9 (12,9 %) ispitanika
(Fisherov egzaktni test, P = 0,01) te je akutni infarkt miokarda (AIM) prisutan kod 5 (7,1 %)
ispitnika (Fisherov egzaktni test, P = 0,02) (Tablica 5.3). To se može povezati direktno s višom
životnom dobi i povećanom prevalencijom komorbiditeta.
Spearmanovim koeficijentom korelacije ocijenili smo povezanost godina izloženosti i broja sati izloženosti po godini izloženosti s jačinom pozitivnih COX-2 nalaza. Slabija je, ali značajna, povezanost godina izloženosti (Spearmanov koeficijent korelacije $\rho = 0,173$ $P = 0,04$) s jačinom nalaza dok je jako dobra povezanost broja sati izloženosti po godini izloženosti, odnosno porastom sati izloženosti povećava se i jačina pozitivnog nalaza COX-2 (Spearmanov koeficijent korelacije $\rho = 0,527$ $P < 0,001$). To direktno ukazuje na povezanost jačine kliničke slike s količinom Sunčevog izlaganja.

Statistička analiza dobivenih rezultata ukazuje na to da je najjači prediktor trajanje izloženosti Sunčevom zračenju u godinama, a zatim izloženost Sunčevom zračenju u satima prema godini izloženosti (Tablica 5.15), tj. to je ono što najviše utječe na pozitivan nalaz COX-2. U našim podacima, s obzirom na pozitivan nalaz COX-2, nešto je bolji dijagnostički pokazatelj izloženost u satima po godini izloženosti u odnosu prema godinama izloženosti (senzitivnost $= 80,9$, specifičnost $= 85,7$, $P < 0,001$). Možemo govoriti o tzv. točki razlučivanja (engl. cut-off point) za razvoj promatranog pozitivnog nalaza COX-2. U ovoj je studiji vjerojatnost za pozitivan rezultat na COX-2 velika ako je izloženost u satima po godini veća od 183,7 h/godinu te ako je postojalo više od 45 godina ukupne UV izloženosti. U nekim studijama u literaturi spominju se cut-off točke izlaganja Sunčevom zračenju. U studiji u Jordanu spominje se izlaganje u prosjeku većem od 1 sat/dan kojim se znatno povećava rizik za razvoj pterigija (73). U studiji u Koreji izlaganje Sunčevom zračenju dulje od 5 sat/dan značajno povećava rizik za razvoj teže kliničke slike pterigija (74). I u ovoj studiji pokazuje se da je najjači prediktor za razvoj kliničke slike pterigija kumulirana kronična izloženost Sunčevom zračenju, ali hoće li se klinička slika i dogoditi, ovisi i o mnogim drugim čimbenicima.

COX-2 nespecifičan je upalni medijator, pozitivan je i u nekim tumorima spojnica (u 83 % tumora spojnica, recidiv pterigija 76 %, primarni pterigij 30 %, normalna spojnica 30 %), ali i u normalnim morfološki nepromijenjenim spojnicama (72). To ukazuje na činjenicu da nije dovoljan samo jedan faktor, u ovom slučaju pozitivna COX-2 aktivnost, tj. upala, nego i udruženi neki drugi čimbenici: genetski čimbenici, izloženost drugim kemijskim ili fizikalnim irritansima i infekcije koje onda sinergistički dovode do razvoja stupnjevite kompletnih kliničkih slike pterigija. Na tome se i temelji praktična preventivna i terapijska korist ove studije.

Aktivnost COX-2, odnosno kronična upala, predstavlja bitnu predilekciju za razvoj pterigija. Iz toga proizlazi da bi se sama prevencija i terapija mogla sastojati od preventivnih mjera
izbjegavanja svih “okidača“ upale, kao što je u ovoj studiji promatrano Sunčevo zračenje. Primarna bi zaštita trebala biti prepoznavanje i edukacija rizičnih populacija, pojedinih društvenih skupina ili pojedinaca unutar populacija za razvoj pterigija, koji su zbog određenih aktivnosti, karakteristika ponašanja, tradicionalnih običaja ili radnih uvjeta kronično izloženi intenzivnom Sunčevom zračenju. Također je, u sklopu prevencije, pravilnom zaštitnom opremom i mjerama ponašanja prijeko potrebno smanjiti neizbježno izlaganje na najmanju moguću mjeru (npr. nošenjem naočala ili kontaktnih leća sa zaštitnim UV filterom, nošenjem primjerene odjeće i pokrivala za glavu, planiranjem odradivanja stanke i boravkom u sjeni u doba najjačeg UV zračenja, kada radni uvjeti dopuštaju…).

Terapijske mjere razumijevaju farmakološke primjene neselektivnih inhibitora upale (75): kortikosteroidne (triamcinolone acetonide (TA), deksametazon, prednizon) ili selektivne inhibitore upale: nesteroidna antiinflamatorne lijekove (NSAIL) (76), selektivne inhibitore COX-2 (77, 78) ili inhibitore čimbenika (79 – 84) kojima upala dalje potiče angiogenezu (npr. anti-VEGF terapija), fibrozaciju (npr. kurkumin) (85) ili kombinaciju svih tih mjera (75, 79).

Danas postoje brojne studije koje ukazuju na brojne potencijalne terapijske metode koje su još zbog tehnoloških ograničenja u eksperimentalnim fazama in vitro ili u pretkliničkim fazama studija. Jedna od obećavajućih svakako je genska terapija kojom bi se, uklapanjem novog genskog koda u stanice, mijenjala i ekspresija promatranih gena koji sudjeluju u regulaciji upalnog odgovora (npr. na razini ekspresije aktivnosti COX-2) i proliferaciji pterigija. Tako se in vitro koristi nanotehnologija (83, 84) i neki virusi (adenovirus) za preskakanje barijera dostave i ugradnje genskih fragmenata u genom stanice. To će biti dobar temelj za neke nove studije.
7. ZAKLJUČAK

Na osnovi provedenog istraživanja i dobivenih rezultata mogu se izvesti sljedeći zaključci:

1. Duljina izloženosti Sunčevom zračenju (izražena u ovoj studiji u godinama i satima po godini izloženosti) bitno utječe na pozitivan nalaz COX-2 aktivnosti u promatranim tkivima spojnica.

2. Duljina izloženosti Sunčevom zračenju (izražena u ovoj studiji u godinama i satima po godini izloženosti) povezana je s jačinom pozitivnih nalaza u promatranim tkivima spojnica.

Patogeneza pterigija svakako je multifaktorijalno prouzročena i stupnjevita, od upalnih do fibrovaskularnih promjena. Upala je važan preduvjet za razvoj pterigija. Konačan će rezultat ovisiti ne samo o kumuliranoj izloženosti Sunčevom zračenju (ovom studijom prikazana kao najjači prediktor za izraženost aktivnosti COX-2) i razvoju upale nego i o nekim drugim parametrima koje smo naveli u ovoj i mnogim drugim epidemiološkim studijama (genetski parametri, životni stil, infekcije…).

Korist je ove studije prepoznavanje važnog čimbenika u patogenezi pterigija (poveznica kumulirano Sunčevo zračenje – COX-2 izraženost te posljedično kronična upala i fibroangiogeneza) i ukazivanje na potrebu preventivnih i terapijskih mjera u svrhu sprječavanja ili usporavanja progresije kliničke slike.
8. SAŽETAK

Naslov: Utjecaj pojedinih prediktora na pojavnost pozitivnog COX-2 nalaza u tkivima spojnica

Cilj istraživanja: Ispitati utječe li duljina izloženosti Sunčevom zračenju bitno na pozitivan COX-2 nalaz i ispitati povezanost duljine izloženosti Sunčevom zračenju s jačinom pozitivnih nalaza u promatranim tkivima spojnica.

Nacrt studije: Prospektivna, case-control studija.

Ispitanici i metode: 189 punoljetnih ispitanika operiranih na Odjelu za očne bolesti u KBC-u Osijek u razdoblju 2010. – 2015. godine. Prvu skupinu čini 119 (63 %) ispitanika operiranih zbog primarnog pterigija spojnica oka III. i IV. stupnja. Drugu (kontrolnu) skupinu čini 70 (37 %) ispitanika operiranih zbog senilne katarakte. Tijekom zahvata uzima se tkivo spojnica te se imunohistkemijski analiziraju uzorci na COX-2 aktivnost. Podatci o izloženosti Sunčevom zračenju upotpunjuju se meteorološkim podacima.

Rezultati: Nema značajne razlike u izloženosti Sunčevom zračenju i analizi COX-2 aktivnosti prema skupinama niti ima razlike u nalazu aktivnosti COX-2 prema spolu i skupinama. Značajno je slaganje u vrijednosti nalaza u tkivu pterigija i u parnom uzorku spojnica (McNemar-Bowkerov test, P < 0,001). Značajna je povezanost godina izloženosti (Spearmanov koeficijent korelacije ρ = 0,173 P = 0,04) s jačinom nalaza, a jako dobra s brojem sati izloženosti po godini izloženosti. Porastom sati izloženosti povećava se i jačina pozitivnih nalaza COX-2 aktivnosti (Spearmanov koeficijent korelacije ρ = 0,527 P < 0,001). Logističkom regresijom ocijenjen je utjecaj više čimbenika na vjerojatnost da će se kod promatranih ispitanika razviti pozitivan nalaz COX-2. Model sadržava osam varijabli (spol, dob ispitanika, izloženost solarnoj ekspoziciji u satima i godinama, utjecaj mjesta stanovanja, hipertenzija, dijabetes, kardiomiopatija). Najjači je prediktor trajanje izloženosti u godinama, zatim u satima prema godini izloženosti. ROC analiza pokazuje da je bolji dijagnostički pokazatelj izloženost u satima prema godini izloženosti (senzitivnost = 80,9, specifičnost = 85,7, P < 0,001) te određuje cut-off točku (točku razlučivanja) od 183,7 sati po godini izlaganja, odnosno 45 godina ukupnog izlaganja.

Zaključak: Duljina izloženosti Sunčevom zračenju (u godinama i satima po godini izloženosti) bitno utječe na pozitivan nalaz COX-2 aktivnosti i trajanje izloženosti povezno je sa jačinom pozitivnih nalaza u promatranim tkivima spojnica.

Ključne riječi: ciklooksigenaza-2, izloženost, pterigij, spojnica, Sunčevo zračenje
9. SUMMARY

Title: Influence of individual predictors on occurrence of positive COX-2 finding in conjunctival tissues.

Research Objective: To inspect whether the duration of exposure to Sun radiation significantly affects the positive COX-2 finding and to inspect the correlation of exposure to Sun radiation with the strength of positive test results in observed conjunctival tissues.

Study Design: Prospective, case-control study

Participants and Methods: 189 adults operated at the Department of Ophthalmology at University Hospital Centre Osijek in the period 2010 - 2015. The first group consists of 119 (63%) subjects who underwent 3rd and 4th degree primary pterygium of the eye conjunctiva surgery. The second (control) group consists of 70 (37%) subjects who underwent senile cataract surgery. The conjunctival tissue was taken during the procedure, and the samples were immunohistochemically analyzed for COX-2 activity. Data on exposure to Sun radiation was complemented with meteorological data.

Results: There is no significant difference in exposure to Sun radiation and COX-2 activity analysis among the groups nor are there differences in COX-2 activity by gender or group. Significant is the match of result values in the pterygium tissue and in the paired sample of conjunctival tissue (McNemar-Bowker test, P < 0.001). There is a significant correlation of the years of exposure (Spearman's rank correlation coefficient $\rho = 0.173 \ P = 0.04$) and a very good correlation of exposure hours per year of exposure with the strength of a finding, respectively. The increase in exposure hours increases the strength of positive COX-2 activity findings (Spearman's rank correlation coefficient $\rho = 0.527 \ P < 0.001$). Using logistic regression, the influence of several factors on the likelihood of COX-2 being positive in the observed subjects was assessed. The model consists of eight variables (gender, age of participants, exposure to Sun in hours and years, influence of place of residence, hypertension, diabetes, and cardiomyopathy). The strongest predictor is the duration of exposure in years, then in hours by year of exposure. ROC analysis shows that a better diagnostic indicator is exposure in hours per year than the years of exposure (sensitivity = 80.9, specificity = 85.7, $P <0.001$) and determines a cut-off point (point of differentiation) of 183.7 hours per exposure year or 45 years of exposure in total.
Conclusion: The duration of exposure to Sun radiation (in years and hours per year of exposure) significantly affects the positive findings of COX-2 activity and correlates with the strength of positive findings in the observed conjunctival tissues.

Keywords: Conjunctive, Cyclooxygenase-2, Exposure, Pterygium, Sun radiation
10. LITERATURA

11. ŽIVOTOPIS

- Ime i prezime: Patricia Reisz-Majić
- Datum i mjesto rođenja: 5. veljače 1976., Osijek, Republika Hrvatska
- Nacionalnost: Hrvatska
- Državljanstvo: hrvatsko
- Obiteljsko stanje: udana, majka troje djece
- Zanimanje i zvanje: liječnik, doktor medicine, specijalista oftalmolog, subspecijalist kirurgije vjeđe i orbite
- Stručni status: 19. prosinca 2001. godine položen stručni ispit pri Ministarstvu zdravstva Republike Hrvatske
- Adresa: Dubrovačka 55, Osijek 31 000
 - mob: 098/496929
 - E-mail: patriciareiszm@gmail.com
- Adresa zaposlenja: Klinički bolnički centar Osijek
 Zavod za očne bolesti, Europske avenije 14-16, 31 000 OSIJEK
 - Tel.:+385 31 225822
 - Fax:+385 31 225850
- Jezici: aktivno engleski, slabije talijanski i njemački jezik

ŠKOLOVANJE:

- 2001. položen stručni ispit pri Ministarstvu zdravstva Republike Hrvatske
• 2009. – 2012. Poslijediplomski znanstveni studij iz biomedicinskih znanosti, Medicinski fakultet Josipa Jurja Strossmayera u Osijeku

DOKTORSKI RAD
Obranjena tema doktorskog rada:
Utjecaj pojedinih prediktora na pojavnost pozitivnog COX-2 nalaza u tkivima spojnice
Patricia Reisz-Majić
Osijek, Hrvatska: Medicinski fakultet, 10. ožujka 2015.
Mentor: prof. dr. sc. Branimir Cerovski, specijalist primarius oftalmologije, subspecijalist neurooftalmologije, prethodni pročelnik Katedre iz oftalmologije Medicinskog fakulteta u Zagrebu
Komentor: doc. dr. sc. Josip Barać, dr. med. specijalist oftalmolog, subspecijalist kirurgije prednjeg segmenta oka, pročelnik Katedre iz oftalmologije Medicinskog fakulteta u Osijeku

RADNO ISKUSTVO
• 2000. – 2001. obvezni volonterski pripravnički staž, KBC Osijek
• 2002. – 2004. Hitna medicinska pomoć, liječnik opće medicine
• 2004. – 2008. specijalizant oftalmologije, KBC Osijek, Odjel za očne bolesti
• Od 2012. kao specijalist oftalmologije raspoređena na Odjelu za bolesti, traumu i kirurgiju prednjega očnog segmenta, KBC Osijek, Zavod za očne bolesti
• 2013. – 2015. subspecijalizant iz kirurgije vjeđe i orbite u KBC-u “Sestre milosrdnice“, Zagreb, mentor: prof. dr. sc. Renata Iveković, subspecijalist kirurgije vjeđa i orbite i prednjeg segmenta oka
• 3. rujna 2015. položila subspecijalistički ispit iz kirurgije vjeđe i orbite

NASTAVNO ISKUSTVO
ZNANSTVENI PROJEKTI

STRUČNO USAVRŠAVANJE
Kao predavač i slušač sudjelovala na većem broju domaćih i europskih kongresa, simpozija i kirurških / dijagnostičkih tečajeva.

ČLANSTVO U STRUČNIM DRUŠTVIMA
• Hrvatsko oftalmološko društv (HOD)
• Sekcije za kataraktu
• Sekcije za plastičnu i rekonstruktivnu kirurgiju vjede i orbite
• Hrvatska liječnička komora (HLK)
• Hrvatski liječnički zbor (HLZ)
• ESOPRS (European society of ophthalmic plastic and reconstructive surgery)

OSTALO
- položila 2001. godine ispit za operatera na PC-u (poznavanje računalnih programa: Word, Excell, Access, PowerPoint, Internet Explorer)
- položila 2003. godine 8. stupanj tečaja engleskog jezika i 1. stupanj talijanskog jezika na Pučkom otvorenom učilištu u Osijeku, Škola stranih jezika
Medicinski interesi: Kirurgija vjeđe i orbite, uključujući suzne puteve
Kirurgija katarakte
Trauma prednjeg segmenta oka, vjeda i orbite
Bolesti prednjeg segmenta oka (tema doktorskog rada)

Popis publikacija: u prilogu
SAŽETAK
Patricia Reisz-Majić, dr. med., specijalistica oftalmologije, subspecijalistica kirurgije vjeđe i orbite, zaposlena je na Zavodu za očne bolesti Kliničkog bolničkog centra Osijek, na Odjelu za kirurgiju, traumu i bolesti prednjeg očnog segmenta.

Stručno se usavršavala u Hrvatskoj i Europi te završila 15 tečaja trajnog usavršavanja. Aktivna je članica više stručnih društava: Europskog društva za oftalmološku rekonstruktivnu i plastičnu kirurgiju, Hrvatskog oftalmološkog društva (HOD), Sekcije za katarktu pri HOD-u, Sekcije za palastičnu i rekonstruktivnu kirurgiju vjeđa i orbite pri HOD-u, Hrvatskog liječničkog zbora i Hrvatske liječničke komore.

U posljednjih 5 godina objavila je 8 (međunarodnih) kongresnih priopćenja i 3 rada, od kojih 1 u časopisu zastupljenom u bibliografskoj bazi Current Contents.

POPIS RADOVA

1. ČASOPISI INDEKSIRANI U CURRENT CONTENTSU:
2. ČASOPISI INDEKSIRANI U INDEX MEDICUS / EXCERPTA MEDICA

3. KONGRESNA PRIOPĆENJA – SAŽETCI

Organizirana nastava s provjerom znanja

1. Gravesova orbitopatija multidisciplinarno: nove spoznaje i smjernice u dijagnostici i liječenju (Zagreb, 18. 3. 2016.)
2. LacriMax TCLDCR surgery (University Medical Centre Ljubljana, EYE Hospital, Slovenia, 2. 2015.) – edukacijski aktivni tečaj operativne tehnike transkanalikularne dakriocistorinostomije
3. „Lasersko liječenje glaukoma“ (Osijek, 2014.)
4. „Phaco Course: Basic Steps and Complications“ (Koprivnica, 2013.) – edukacijski aktivni tečaj operativne tehnike PHACO operacije mrenje
5. „Phaco Course: Basic Steps and Complications“ (Koprivnica, 2012.) – edukacijski aktivni tečaj operativne tehnike PHACO operacije mrenje
6. 9. Simpozij „Suvremeno u oftalmologiji“ (Zagreb, 2012.)
7. Medikamentozno i kirurško liječenje bolesti stražnjeg segmenta oka („Wet-lab“ intravitrealna aplikacija lijekova (Zagreb, 2012.) edukacijski aktivni tečaj operativne tehnike intravitrealne aplikacije lijekova
8. Dijagnostika disfunkcije Meimbomovih žlijezda-MGD (Osijek, 2011.)
9. „Klinički terapijski pokus“ (Osijek, 2010.)
10. 6th Congress of the Croatian Society for Cataract and Refractive Surgery (CSCRS), Zagreb, 2010.
11. „Ocular trauma symposium“ edukacijski aktivni tečaj operativne tehnike zbrinjavanja traume oka (Maribor, siječanj 2009.)
12. XII SIDUO (Societas Internationalis Pro Diagnostica Ultrasonica in Ophthalmology&Croatian Ophthalmological Society Ultrasound Division) congress (Dubrovnik, 2008.)
13. Glaukom i druge najčešće bolesti oka (Zagreb, 2007.)
14. Ultrazvučna oftalmološka dijagnostika (Zagreb, veljača/ožujak 2007.), tečaj
15. Infekcije biomaterijala / Infections of biomaterials (Osijek, 2003.)
12. PRILOZI

12.1. Prilog 1. OBAVIJEST ZA ISPITANIKE O ISTRAŽIVANJU
12.2. Prilog 2.1. SUGLASNOST ZA OPERACIJU KATARAKTE
12.3. Prilog 2.2. SUGLASNOST ZA OPERACIJU PTERIGIJA
12.4. Prilog 3. UPITNIK
OBAVIJEST ZA ISPITANIKE O ISTRAŽIVANJU

Poštovani,

Zdravstvene vlasti zahtjevaju da Vas se u cijelosti upozna sa svrhom istraživanja, te mogućim rizicima kojima ste izloženi za vrijeme isitivanja.

Molimo Vas da ovaj obrazac pročitate u cijelosti te da prije pristanka na sudjelovanje u istraživanju postavite bilo koja pitanja.

Pterigij je česta degenerativna, fibrovaskularna promjena bulbarne spojnice koja ima tendenciju urastanja od limbusa prema centru rožnice. U uznepredovalom stadiju može dovesti do značajnog pada vidne oštrine, a zbog relativno velike incidencije u određenim populacijama (poljoprivrednici, terenski radnici na otvorenom, radnici izloženi kemijskim agensima...), predstavlja bitan javnoznanstveni problem. Pretpostavljene su različite uzročne nokse (upala, infekcija, izloženost sunčevom zračenju, kemijsko-mehanički iritansi, humani papiloma virusi...). Starija životna dob i ruralna populacija su parametri vezani za dugotrajni rad na otvorenom i kumuliranu sunčevu ekspoziciju, te izloženosti kemijsko-mehaničkim iritansima i kroničnom isušenju površine oka. Dosadašnji rezultati ukazuju na multifaktorijalnu patogenezu pterigija, a ova studija je fokusirana na upalnu komponentu. Ciklooksigenaza-2 (COX-2) je opći mediator upale koji sudjeluje u metabolizmu arahidonske kiseline, te tako modulira sam upalni odgovor. COX-2 je inducirana tumor promovirajućim faktorima kao što je UV zračenje. Pretpostavlja se direktan fototoksični mehanizam UV zračenja i indirektni stvaranje ROS (engl. reactive oxygen species) tzv. oksidativan stres koji oštećuje stanice, ali i inducira sintezu COX-2 koji dalje stimulira PGE2. PGE2 djeluje kao mitogen, te inhibira apoptozu i tako zaostaju tzv. “sun burn cells“ koje se u epidermisu inače normalno razgrade apoptozom. Tako se povećava nakupljanje oštećenja deoksiribonukleinske kiseline (DNK) i smanjuje mogućnost popravka oštećenja DNK.

Cilj istraživanja je, određivanjem COX-2 aktivnosti u ispitivanim tkivima spojnica, utvrditi koji su rizični faktori bitni za pojavu pterigija, te procijentiti i samu svrhu provođenja određenih preventivnih mjera i terapije protuupalnim lijekovima.
Možda nećete imati izravne koristi od sudjelovanja u ovom istraživanju, ali spoznaje koje će se u okviru njega steći, mogu pomoći u definiranju boljeg profilaktičkog i prije svega terapijskog djelovanja kod pterigija, koji u uznepređenom stadiju može dovesti do značajnog gubitka vida.

OPIS POSTUPKA
Ako se odlučite sudjelovati u ovom istraživanju bit ćete neposredno prije operacije temeljem anamneze i kompletnog oftalmološkog pregleda, raspoređeni u jednu od dvije ispitivane skupine.

Prva skupina uključit će pacijente operirane zbog primarnog pterigija, gdje će se tijekom rutinske operacije pterigija metodom s autotransplantatom spojnice, uzeti uzorak tkiva pterigija. Druga skupina uključit će pacijente rutinski operirane zbog katarkte metodom ECCE/fakoemulzifikacijom (PHACO), tijekom koje će se uzeti i uzorak spojnice.

Svim pacijentima će se pri naručivanju i planiranju operativnog zahvata, uz obavijest za ispitanike o istraživanju, uručiti i poseban obrazac kojim se informira pacijenta o vrsti, načinu izvođenja operativnog zahvata, općim rizicima zahvata, uspješnosti liječenja i načinu ponašanja pacijenta u ranom poslijeoperacijskom razdoblju, a koji se rutinski uručuje svakom pacijentu prije planiranog zahvata (u prilogu).

Imate pravo na privatnost. Sve informacije zabilježene tijekom informativnog razgovora s pacijentom, a zabilježeni u obliku pisanog obrazca „Upitnik“ (u Prilogu 3) ostat će povjerljive. Bez Vašeg pristanka Vaše ime neće biti otkriveno niti u jednom izvješću.

Vaša odluka o sudjelovanju je dobrovoljna. Možete odlučiti i ne sudjelovati. Jednom kada odlučite sudjelovati u ovom istraživanju, u svakom trenutku možete povući svoj pristanak i prekinuti sudjelovanje, za što nećete snositi nikakve posljedice, niti ćete biti zakinuti u daljnjem liječenju.

Vaš liječnik može prekinuti sudjelovanje u ovoj studiji i bez Vašeg pristanka.

Ako imate bilo kakva pitanja o svom liječenju ili o svojim pravima kao subjekta u istraživanju za vrijeme kao i nakon studije, možete kontaktirati dr.Reisz-Majić na broj telefona 031/225 822 (KBC Osijek, Odjel za oftalmologiju) ili 098496929 (mobitel).
INFORMACIJA ZA PACIJENTA

ISPITANIK (IME I PREZIME): __

POTPIS: __

ZAKONOM OVLAŠTEN ZASTUPNIK (po potrebi): _______________________________

DATUM: __

ISTRAŽIVAČ: Patricia Reisz-Majić, dr.med., specijalist oftalmologije
Prilog 2.1:

SUGLASNOST ZA OPERACIJU KATARAKTE

Klinički bolnički centar Osijek- ODJEL ZA OFTALMOLOGIJU

Osijek, dana ______________

Europske avenije 14-16, 31000 Osijek

TEL. 031/225-822

PRIJE POTPISIVANJA SUGLASNOSTI ZA OPERATIVNI ZAHVAT MOLIMO PROČITATI NAPUTAK!

Poštovana/poštovani pacijentu, kod Vas je dijagnosticirana siva mrena(katarakta), tj.zamućenost očne leće. Siva mrena može biti urođena, ali je najčešće posljedica starenja, bolesti ili ozljeda. S napredovanjem zamućenosti očne leće, postupno se smanjuje vid i leća vrlo često postaje sive ili bijele boje, odakle i naziv. Do smanjenja vida može dovesti i zamućenost leće uslijed bolesti pri kojoj akutno raste očni tlak tzv. glaukom. Jedini uspješni i trajni način poboljšanja vida kod pacijenta sa sivom mrenom je operativni zahvat uklanjanja zamućene leće(opracija katarakte) i istodobna ugradnja umjetne intraokularne leće. Postoje određeni slučajevi kada se tek tijekom operacije pokaže da nije moguće ugraditi umjetnu leću, no tada se oštrina vida mora korigirati specijalnim naočalama (jaka stakla) ili kontaktnim lećama.

U kakvoj se anesteziji izvodi operativni zahvat?

Operativni zahvat se izvodi u lokalnoj, a rjeđe u općoj anesteziji ili u kombinaciji lokalne i opće anestezije. Kod lokalne anestezije se ubrizgava anestetik pokraj i iza očne jabučice, te dodatno tijekom operacije pojačava njegovo djelovanje dokavanjem istog u obliku očnih kapi.

STADIJ OPERACIJE:

1. ODSTRANJIVANJE ZAMUĆENE LEĆE

Ispod operacijskog mikroskopa, oko se otvori malim rezom na rubu rožnice. Zamućena leća se tada odstranjuje na označenom mjestu.

-FAKOEMULZIFIKACIJA/PHACO (ultrazvučna operacija mrene)-u zamućenu leću se uvodi posebna šuplja igla (ultazvučna sonda). Tvrda jezgra leće se ultrazvučno usitni i usiše.

-EKSTRAKAPSULARNO ODSTRANJIVANJE LEĆE (klasična metoda operacije) - jezgra zamućene leće se oprezno istisne. Ostali dijelovi leće se odstranjaju posebnom specijalnom šupljom iglom s pripravkom za ispiranje. Bistra stražnja kapsula leće se ostavlja kod obje metode.

-INTRAKAPSULARNO ODSTRANJIVANJE LEĆE (operativna metoda za komplicirane slučajeve) -u određenim slučajevima nakon ozljeda očiju ili kod posebnih anatomske...
odstupanja leća, pristupa se ovoj metodi koja ne uključuje i istodobnu ugradnju umjetne leće. U rijetkim slučajevima se ne može zamućena leća potpuno odstraniti i tada je potreban drugi zahvat.

2. UGRADNJA UMJETNE LEĆE
Jakoća umjetne leće se za Vaše oko individualno izračunava. Tako se istodobno može korigirati i raniji slabiji vid uzrokovani sivom mrenom. Umjetna leća se ugrađuje na stražnju kapsulu leće oka, ili u prednju sobicu ukoliko stražnja kapsula leće, za vrijeme operacije nije ostala cjelovitom. Na kraju operacije se rez zatvori vrlo finim šavovima, a kod posebnih oblika rezova se zbog takvih okolnosti mogu šavi i izostaviti.

Koje nuspojave i komplikacije mogu nastupiti tijekom operacije?

OPĆI RIZICI OPERACIJE
Kod određenog postotka pacijenata nakon operacije, može doći do naknadnog (sekundarnog) zamućenja stražnje kapsule leće. Ova promjena se može riješiti i ambulantno, laserskim tretmanom. I pripreme, prateće, i naknadne mjere (npr. očne kapi i infuzije) nisu potpuno bez nuspojava i rizika. Za detaljnije upute i informacije pitajte vašeg liječnika oftalmologa.

USPJEŠNOST LIJEČENJA
Ugrađena umjetna leća može opet uspostaviti vidnu oštrinu. U pravilu su potrebne naočale za čitanje, rjeđe i za korekciju dalekovidnosti. Uz svu pažnju, katkad se ne mogu spriječiti jača odstupanja od željene jakosti leća. Ukoliko je oko već prije operacije bilo oštećeno, npr. promjenama centralnog dijela rožnice ili mrežnice oka (središte najboljega vida) uzrokovanim šećernom bolešću, glaukomom, odljepljenjem mrežnice ili promjenama na krvnim žilama oka, potpuni se vid postoperativno ne može postići ni uz pomoć naočala. Ukoliko nije od strane nadležnog liječnika specijaliste drugačije određeno, molim svaku zahvata operater odlučuje da li, i kada se ukidaju lijekovi za smanjenje krvarenja (npr. Marcumar, Aspirin, Andol), tj kada se zamjenjuju drugim lijekovima. Ako se planira opća anestezija, anesteziolog će Vam ukazati na što morate obratiti pažnju prije zahvata.

NAKON OPERATIVNOG ZAHVATA
Izbjegavati tjelesne napore, pridržavati se liječničkih uputstava glede mirovanja, ležanja na leđima ili na boku suprotnom operiranom oku, bezuvjetno uzimati propisane kapi i/ili masti u skladu s liječničkim uputstvom, prvih 7 dana nakon operacije ne dirati oko, tj. ne trljati ga, iako Vas svrbi i žulja, jer se na taj način omogućava proces urednog cijeljenja rane nakon operacije. Prvih 14 dana izbjegavati pranje kose, make- up oko očiju, odlazak u bazen ili saunu, redovito dolaziti na kontrole. Mjesec dana nakon operacije izbjegavati dizanje teških tereta, sagibanje dolje i naprijed. Nakon operacije možete slobodno gledati televiziju.

MOLIMO VAS, da odmah obavijestite Vašeg liječnika opće prakse ukoliko dođe do crvenila operiranog oka, akutnih bolesti ili pogoršanja vida.

MOLIMO, U SVEZI SVIH NEJASNOĆA ILI PODROBNIJIH INFORMACIJA PITAJTE VAMA NADLEŽNOG OFTALMOLOGA
Suglasan/sna sam da sam proučio/la gore navedene upute i informacije, te sam suglasan/sna za operativni zahvat što potvrđujem vlastoručnim potpisom.(potpis pacijenta ili skrbnika)
Poštovanja/poštovani pacijentu, kod Vas je dijagnosticiran pterigij, duplikatura spojnice koja prerasta rožnicu. Još se točan uzrok nastanka pterigija ne zna, ali se pretpostavljaju mnogi čimbenici kao sunčevo zračenje, kronične upale, infekcije, izloženost fizikalno-kemijskim iritansima, te pseudopterigiji kao posljedica prerastanja spojnice na mjestu prethodne ozljede. S napredovanjem, postupno se smanjuje vid i može se vidjeti trokutasto bijelkasto zamućenje rožnice sa više ili manje izraženom hiperemijom (crvenilom) spojnice i neovaskularizacijom rožnice. Do smanjenja vida može doći zbog astigmatizma uslijed nepravilne zakrivljenosti rožnice ili/prerastanja tkiva pterigija preko zjenice. Uspješan način poboljšanja vida kod pacijenta sa pterigijem je operativni zahvat uklanjanja tkiva pterigija. Rezultat je većinom trajan, iako u 20-30% slučaj zabilježen recidiv, te je potrebno ponoviti operaciju i eventualno kombinirati sa nekom drugom terapijom.
U kakvoj se anesteziji izvodi operativni zahvat?
Operativni zahvat se izvodi u lokalnoj anesteziji. Kod lokalne anestezije se ubrizgava anestetik subkonjunktivalno u području pterigija, te dodatno tijekom operacije pojačava njegovo djelovanje dokopavanjem anestetika u obliku očnih kapi.

STADIJ OPERACIJE:
1. **ODSTRANJIVANJE TKIVA PTERIGIJA**
Ispod operacijskog mikroskopa, odstrani se tkivo glave pterigija s rožnice te se detaljno očisti rožnica i baza pterigija sa bjeloočnice i odstrani se Tenonova kapsula.

2. **AUTOTRANSPLANTACIJA BULBARNE SPOJNICE**
Ispreparirana superotemporalna dio bulbarne spojnice u sloju te se rotacijom i šivanjem finim šavovima zatvori defekt zaostao nakon odstranjena tkiva pterigija. Rijeđe se zatvori zaostao defekt spojnice primarnim šivanjem bez transplantata. Vrlo rijetko se koristi umjesto konaca, fibrinsko tkivno ljepilo.
Koje nuspojave i komplikacije mogu nastupiti tijekom operacije?
OPĆI RIZICI OPERACIJE

USPJEšnost LIJEčENJA

Operativno odstranjeno tkivo pterigija može dovesti do ponovne uspostave vidne oštrine. Uz svu pažnju, katkad se ne može dobiti željena vidna oštrina, jer je tkivo rožnice trajno promjenjeno u smislu zakrivljenosti (astigmatizam) ili zamućenja koje onemogućava uspostavu bolje vidne oštrine. Posebno, ako se radi o ponovljenim operacijama pterigija. Ukoliko je oko već prije operacije bilo oštećeno, npr. promjenama centralnog dijela rožnice ili mrežnica oka (središte najboljeg vida) uzrokovanim šećernom bolesću, glaukomom, odljepljenjem mrežnice ili promjenama na krvnim žilama oka, potpuni se vid postoperativno ne može postići ni uz pomoć nacošala. Ukoliko nije od strane nadležnog liječnika specijaliste drugačije određeno, molim svakako obratiti pozornost: prije zahvata operater odlučuje da li, i kada se ukidaju lijekovi za smanjenje krvarenja (npr. Marcumar, Aspirin, Andol), tj kada se zamjenjuju drugim lijekovima.

NAKON OPERATIVNOg ZAHVATA

S obzirom da nakon zahvata ostaje rana na rožnici koja mora spontano zacijeliti epitelom rožnice, za pacijenta oporavak može biti neugodan i više ili manje bolan. Navedeni simptomi
se mogu smanjiti aplikacijom terapeutke kontakne leće ili čestim apliciranjem lokalne terapije, posebice masti, te sistemnim analgeticima.

Izbjegavati tjelesne napore, pridržavati se liječničkih uputstava glede mirovanja, bezuvjetno uzimati propisane kapi i/ili masti u skladu s liječničkim uputstvom, prvih 7 dana nakon operacije ne dirati oko, tj. ne trljati ga, iako Vas svrbi i žulja, jer se na taj način omogućava proces urednog cijeljenja rane nakon operacije i smanjuje mogućnost infekcije. Prvih 14 dana izbjegavati pranje kose, make-up oko očiju, odlazak u bazen ili saunu, redovito dolaziti na kontrole. Nakon operacije možete slobodno gledati televiziju.

MOLIMO VAS, da odmah obavijestite Vašeg liječnika opće prakse ukoliko dođe do jačeg crvenila operiranog oka, akutnih bolova oka ili glavobolja kao i do pogoršanja vida.

MOLIMO, U SVEZI SVIH NEJASNOĆA ILI PODROBNIJIH INFORMACIJA PITAJTE VAMA NADLEŽNOG OFTALMOLOGA

Suglasan/sna sam da sam proučio/la gore navedene upute i informacije, te sam suglasan/sna za operativni zahvat što potvrđujem vlastoručnim potpisom.(potpis pacijenta ili skrbnika)
Prilog 3: UPITNIK

Šifra pacijenta: ___________ Grupa: 0 - kontrola 1 – pterigij

1. Spol 1 - muškarac 2 – žena

2. Dob ____________

3. Zanimanje: 1. domaćica 5. nezaposlen
 2. radnik 6. poljoprivrednik
 3. umirovljenik 7. službenik
 4. vozač 8. ostalo______________

4. Gdje rade: 1-rade na otvorenom 2- ostali rad u zatvorenom 3- prašina, kemikalije, vrućina

5. Razina obrazovanja: 1. nepismen 2. NSS 3. SSS 4. VSS 5. osnovna škola

6. Mjesto stanovanja: 1 - ruralna sredina 2 - urbana sredina

7. Izloženost u godinama (+/- exp.za vrijeme g.o.)
 0 - domaćice
 IA - sezonski rad na otvorenom
 IB - cijelogodišnji rad na otvorenom
 II - rad u zatvorenom bez solarne ekspozicije izvan posla
 III - rad u zatvorenom + solarna ekspozicija nakon posla

8. Komorbiditeti: 0 - ne 1 – da

9. Bolesti bolesti oka:
 1 - upalne bolesti oka 2 - druge bolesti oka:

10. Tumori oka: 0 - ne 1 - da
 1. benigni
 2. maligni

11. Sistemne bolesti:
 1 - upalne / imunološke / infektivne:
 2 - ostale bolesti: