SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU
MEDICINSKI FAKULTET OSIJEK
Sveučilišni preddiplomski studij medicinsko laboratorijske
dijagnostike

Klara Alduk

IMUNOHISTOKEMIJSKE METODE
U DIFERENCIJACIJI RAKA PLUĆA
NE-MALIH STANICA

Završni rad

IMUNOHISTOKEMIJSKE METODE
U DIFERENCIJACIJI RAKA PLUĆA NE-MALIH STANICA

Završni rad

Rad je ostvaren u Kliničkom zavodu za patologiju i sudsku medicinu Kliničkog bolničkog centra u Osijeku.

Mentor rada: prof.dr.sc. Branko Dmitrović, dr. med.

Rad ima 28 listova, 7 tablica i 7 slika.
Veliku zahvalnost u prvom redu dugujem mentoru prof.dr.sc. Branku Dmitroviću na predloženoj temi, ukazanom povjerenju, pruženoj prilici za suradnju, potpori u mom stručnom i znanstvenom usavršavanju te brojnim savjetima pri realizaciji rada.

Zahvaljujem svim svojim prijateljima i kolegama koji su mi olakšali tijek studiranja te ga učinili ugodnijim i ljepšim.

Posebnu zahvalnost iskazujem svojoj obitelji koja je sve ove godine bila uz mene, nesebično mi pružala potporu i bez koje ništa od ovoga ne bi imalo istu težinu. Hvala vam od srca!
<table>
<thead>
<tr>
<th>PONOVO</th>
<th>OZNAKA</th>
<th>IZLOŽENOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVOD</td>
<td>1.1.</td>
<td>1.1.1.</td>
</tr>
<tr>
<td>Rak pluća</td>
<td>1.1.1.</td>
<td>Epidemiologija</td>
</tr>
<tr>
<td></td>
<td>1.1.2.</td>
<td>Etiologija i patogeneza</td>
</tr>
<tr>
<td></td>
<td>1.1.3.</td>
<td>Podjela raka pluća</td>
</tr>
<tr>
<td></td>
<td>1.1.4.</td>
<td>Otkrivanje raka pluća</td>
</tr>
<tr>
<td></td>
<td>1.1.5.</td>
<td>Stupnjevanje raka pluća</td>
</tr>
<tr>
<td>CILJ</td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>Materijali i metode</td>
<td>3.</td>
<td>3.1. Ustroj studije</td>
</tr>
<tr>
<td></td>
<td>3.2. Materijali</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.3. Metode</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.3.1. Imunohistokemija</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.3.2. Priprema uzoraka u imunohistokemiji</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3.3.3. Korišteni biljezi u imunohistokemiji</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.4. Statističke metode</td>
<td>11</td>
</tr>
<tr>
<td>REZULTATI</td>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>RASPRAVA</td>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>ZAKLJUČAK</td>
<td>6.</td>
<td>22</td>
</tr>
<tr>
<td>SAŽETAK</td>
<td>7.</td>
<td>23</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>8.</td>
<td>24</td>
</tr>
<tr>
<td>LITERATURA</td>
<td>9.</td>
<td>25</td>
</tr>
<tr>
<td>ŽIVOTOPIS</td>
<td>10.</td>
<td>28</td>
</tr>
</tbody>
</table>
POPIS KRATICA:

SCLC - karcinom pluća malih stanica

NSCLC - karcinom pluća ne-malih stanica

CK 5/6 - citokeratin 5/6

p63 - protein 63

TTF-1 - faktor transkripcije štitnjače 1

CT - kompjuterizirana tomografija

MR - magnetna rezonancija

PET - pozitronska emisijska tomografija

BAL - bronhoalveolarni obrisak

PAP - peroksidaza anti-peroksidaza

CK7 - citokeratin 7

KBC - Klinički bolnički centar

HE – hematoksilin i eozin
1. UVOD

Rak ili zloćudni tumor, patološka je tvorba, potencijalno opasna za život. To je zloćudna novotvorina koja nastaje nekontroliranom proliferacijom abnormalnih stanica (1). Predstavlja neobuzdanu rastuću masu transformiranih stanica (2).

Rast zloćudnih stanica možemo opisati kao:

- **Nesvrhovit** - nema biološke svrhe, organizam ne koristi tumorske stanice koje u većini slučaja mogu biti štetne.
- **Autonoman** - rast novotvorina ne ovisi o fiziološkim kontrolnim mehanizmima. Tumorske stanice abnormalno reagiraju na stimulaciju faktora rasta, hormona te ostalih biološki aktivnih tvari u krvi i u zdravim tkivima.
- **Parazitski** - same novotvorine iskorištavaju domaćina do krajnjih granica, poput parazita, gdje iz krvotoka istog, izvlače bitne sastojke za vlastiti život, poput kisika i hormona.
- **Nepravilan i neorganiziran** - tumorske stanice rastu nepravilno, neorganizirano i bez kontaktne inhibicije te zbog toga ne stvaraju tkiva ili organe. Često se ne diferenciraju u zrele stanice koje se nalaze u normalnim tkivima pa se još nazivaju nediferencirane ili atipične stanice.

Stvaranje presadnica ili metastaza jedno je od glavnih obilježja zloćudnih tumora. Tumorske stanice prodiru u krvne i limfne žile, šire se tijelom i zauzimaju okolna tkiva direktnim rastom, invazijom (1, 2).

Osim simptoma zahvaćenih organa, zloćudni tumori mogu uzrokovati i sustavne simptome poput opće slabosti, naglog gubitka tjelesne mase, temperature, mijalgije, artralgije i slično. Ta pojava je poznata kao paraneoplastični sindrom (3).

1.1. Rak pluća

Rak pluća nastaje zloćudnom preobrazbom epitelnih stanica, bronha i bronhiola (1). Kod većine, rak pluća nastaje u bronhima (95 %) slučajeva, dok ostatak (3-5 %) slučajeva otpada na alveole. Karcinomi pluća su vrlo invazivni i brzo se šire na druge organe (4). Preobrazbu stanica uzrokuju čimbenici poput pušenja, udisanja onečišćenog zraka koje je usko vezano za
1. Uvod

Pojedine profesije te idiopatska plućna fibroza kod koje je primijećena pojačana učestalost samog raka pluća. Rak pluća posjeduje tendenciju širenja u ranoj fazi nakon formiranja te ga ta osobitost čini izrazito opasnim po život i teškim za liječenje. Presadnice (metastaze) mogu zahvatiti skoro svaki organ ili organski sustav. Ima sposobnost širenja krvlju, limfom, izravno te pleurom. Hematogenim putem širenja dospijeva u jetru, mozak, bubrege, nadbubrežne žlijezde, slezenu i kosti. Limfnim širenjem metastazira u traheobronhalne, pazušne, natključne, vratne i trbušne limfne čvorove. Tijekom izravnog metastaziranja, prvo se širi u najbliže strukture kao što su hilarni limfni čvorovi, kralješci, prsna stijenka te pleura (1, 2, 3).

1.1.1. Epidemiologija
Rak pluća predstavlja najčešći karcinom u svijetu. Prema podacima iz 2008. procjenjuje se da je 2008. od raka pluća oboljelo 1,61 milijun ljudi, što čini 12,7 % svih novodijagnosticiranih zloćudnih tumora u toj godini (5). Prema podacima Registra za rak Republike Hrvatske iz 2011., rak pluća najčešći je uzrok smrtnosti od zloćudnih novotvorina kod muškaraca i kod žena. Rak pluća najčešće se pojavljuje u dobi između 40 i 70 godina života, nešto češće u muškaraca nego kod žena. Važna je činjenica da je pušenje sve više prisutno u mladih osoba te kod žena pa se karcinom sve češće dijagnosticira u ovim skupinama (2, 3). Nakon prestanka pušenja, rizik za rak pluća znatno se smanji unutar prve dvije godine, a nakon toga polako se smanjuje u narednih 15 godina, ali nikad ne padne na razinu nepušača (2). Samo 5-15 % bolesnika otkrije bolest u asimptomatskoj fazi (3). Većina karcinoma otkriva se u uznapredovalom, neoperabilnom stadiju, zbog nepostojanja učinkovitih metoda probira, te zbog toga što ne postoje dovoljno specifični biomarkeri za rano otkrivanje (1). Posljedično je preživljenje bolesnika kratko i ne poboljšava se. Petogodišnje preživljenje u Europi i Americi iznosi oko 15 %, promatrano zajedno za sve tipove karcinoma pluća i stadije (6).

1.1.2. Etiologija i patogeneza
Pušenje cigareta, cigara i lula pokazalo se kao čimbenik rizika koji ima najveće značenje za razvoj raka pluća (5). Nikotin ima važnu ulogu u patogenezi samog raka. Visoko kancerogeni nikotinski derivati stvaraju se u cigaretnom dimu. Stanice raka pluća svih histoloških tipova na svojoj površini iskazuju receptore za nikotin koji su veoma slični nikotinskim acetilkolinskim receptorima. Iz navedenih razloga, postoji mogućnost da nikotin direktno ulazi u patogenezu raka pluća (3). Primijećena je izravna povezanost između učestalosti
1. Uvod

nastanka raka pluća i broja popuštenih cigareta. Primjerice, oni koji na dan puše 30 cigareta i više, imaju 22 puta veći rizik za razvoj raka pluća od onih koji nikad nisu pušili (5). Iako se rak pluća kod ljudi ne smatra genetskom bolešću, ispitivanja provedena pomoću molekularne genetike, pokazala su kako su same stanice raka pluća stekle određen broj genetskih mutacija koje sudjeluju u nastanku i progresiji raka. Zapravo, izgleda da stanice raka pluća trebaju prikupiti veći broj (možda 10 ili više) takvih mutacija, da bi rak postao klinički uočljiv (2, 3). Osim već spomenutih kancerogena koje pronalazimo u dimu cigareta, postoje i oni koji se nalaze u ispušnim plinovima iz automobila, industrijskih postrojenja i termoelektrana te je incidencija raka pluća povećana na područjima s većom zagađenošću zraka. Također, postoji i povezanost između izloženosti azbestu te raka pluća. Povećan rizik javlja se nakon višegodišnje izloženosti, obično 20 i više godina. Prehrana koja je bogata zasićenim mastima i kolesterolom, a uključuje malo voća i povrća koji sadrže vitamine A, C i E, β-karoten, selen i cink također povećava rizik od nastanka raka pluća (6). Čimbenik rizika za nepušače je izloženost radonu koji nastaje prirodnim raspadom urana (3).

1.1.3. Podjela raka pluća

Rak pluća može se podijeliti na:

- **Karcinom pluća malih stanica (SCLC)** kod kojega pušenje, kao čimbenik rizika, igra važnu ulogu te su gotovo svi bolesnici pušači. Pri dijagnosticiranju, dvije trećine bolesnika ima udaljene metastaze. Čini od 10 do 20 % karcinoma pluća.

- **Karcinom pluća ne-malih stanica (NSCLC)** javlja se znatno češće od karcinoma pluća malih stanica te čini od 80 do 90 % karcinoma pluća. U skupinu NSCLC tumora pluća svrstani su:
 - Planocelularni karcinom - 20-30 %
 - Adenokarcinom - 30-40 %
 - Velikostanični karcinom - 10 %.

Planocelularni karcinom pokazuje visoku povezanost s pušenjem i javlja se obično kod starijih muškaraca (3). Udaljene metastaze javljaju se nešto kasnije nego kod ostalih karcinoma pluća ne-malih stanica. Karcinogeneza predstavlja proces koji započinje metaplazijom bronhalnog epitela pri čemu se isti pretvori u pločasti epitel. Nakon toga pretvorba ide u smjeru displastičnog pločastog epitela te u preinvazivni karcinom, a zatim invazivni planocelularni karcinom (1). Uz njega se veže i nastanak Pancoastovog sindroma
kojega obilježava bol u ramenu koja se širi ulnarnom stranom ruke (3). Ukoliko nema barem jedne od navedenih mikroskopskih karakteristika, potrebno je imunohistokemijski, upotrebom protutijela (CK 5/6 ili p63) dokazati pločastu diferencijaciju (1).

Adenokarcinom pluća je najčešći tip karcinoma pluća ne-malih stanica te čini oko 40 % karcinoma pluća. Razvija se u mukoznim žlijezdama pluća, može se javiti kod pušača i nepušača. S obzirom da nastaje u mukoznim žlijezdama, neki od tumora imaju sposobnost stvaranja sluzi, ali sama količina sluzi u tumoru varira. Adenokarcinom se može javiti zajedno s planocelularnim karcinomom pluća ne-malih stanica. Poseban podtip adenokarcinoma je bronhioalveolarni karcinom. Ako ne nalazimo jasne dijagnostičke elemente koji bi upućivali da se radi o adenokarcinomu, potrebno je koristiti protutijela koja su pozitivna u adenokarcinomu pluća (TTF-1, CK7) (1, 2, 3).

Velikostanični karcinom tvori velike čvorove koji su često prožeti krvlju i nekrotični. Čini svega 10 % karcinoma pluća. Definiran je kao slabo diferencirani, ne-sitnostanični karcinom pluća bez jasne žljezdane, pločaste ili neuroendokrine diferencijacije (1).

1.1.4. Otkrivanje raka pluća

Prilikom borbe protiv raka pluća, cilj je otkriti bolest u što ranijem stadiju kako bi liječenje bilo što uspješnije. Nažalost, u mnogim slučajevima pacijenti se prekasno jave što uvelike otežava liječenje i povećava smrtnost (1). Simptomi koji prate karcinom pluća su progresivni nedostatak daha (dispneja), kašalj, bol u prsima, promuklost, hemoptiza (iskašljavanje krvi), pneumonija. U odnosu na ostale tipove karcinoma pluća ne-malih stanica, adenokarcinom se često dijagnosticira slučajno jer za razliku od ostalih karcinoma pluća pluća ne-malih stanica on je češće bez simptoma. Zbog izrazite brzine nastanka metastaza, bolesnici s karcinomom pluća malih stanica često imaju simptome koji dolaze od strane udaljenih organa. Simptomi koji su povezani s diseminiranom bolesti uključuju gubitak tjelesne težine, abdominalnu bol uslijed metastaza u jetri, adrenalnim žlijezdama i gušterači te bol uslijed metastaza u kosti (koštanu srž). Paraneoplastični simptomi su česti kod pacijenata s karcinomom pluća. Endokrini i paraneoplastični sindromi su rjeđi kod adenokarcinoma u odnosu na ostale histološke tipove karcinoma pluća (1, 5, 7). U otkrivanju raka pluća koristimo se: anamnezom i fizikalnim pregledom, rendgenskom snimkom, kompjuteriziranom tomografijom (CT-om), magnetnom rezonancijom (MR-om), pozitronskom emisijskom tomografijom (PET), scintigrafijom.
1. Uvod

kostiju pri sumnji na koštane metastaze, citologijom iskašljaja, bronhoalveolarnim obriskom (BAL-om), biopsijom i torakocentezom (3).

1.1.5. Stupnjevanje raka pluća

Ovisno o lokalizaciji i tipu raka pluća, bolest možemo podijeliti u nekoliko stadija. Karcinomi pluća ne-malih stanica i malih stanica imaju zasebne stadije.
Karcinom pluća svrstavamo u pojedini stadij na temelju TNM klasifikacije, pri čemu slovo T predstavlja primarni tumor, slovo N regionalne limfne čvorove, a slovo M udaljene metastaze (3).

Karcinom pluća ne-malih stanica dijelimo na:
I. stadij - karcinom je ograničen na plućni parenhim
II. i III. stadij - karcinom se širi na strukture koje su lokalizirane u prsnom košu
IV. stadij - karcinom se širi na druge, udaljene strukture.

Karcinom pluća malih stanica dijelimo na:
I. stadij - karcinom je ograničen na plućni parenhim
II. stadij - karcinom se širi na strukture izvan prsnog koša (8).
2. CILJ

Ciljevi ovog istraživanja su:
1. Utvrditi učestalost svih tipova karcinoma pluća u jednogodišnjem bioptičkom materijalu Kliničkog zavoda za patologiju i sudsku medicinu KBC-a Osijek.
2. Utvrditi učestalost osnovnih podtipova raka pluća u istraživanom materijalu (raka pluća malih i ne-malih stanica).
3. Utvrditi učestalost adenokarcinoma pluća u podskupini karcinoma pluća ne-malih stanica.
4. Utvrditi učestalost primjene imunohistokemijskih metoda u patohistološkoj dijagnostici adenokarcinoma pluća.
3. Materijali i metode

3. MATERIJALI I METODE

3.1. Ustroj studije
Istraživanje u završnom radu je provedeno kao retrospektivna studija (9). Prikupljeni su patohistološki nalazi i stakalca tumorskog tkiva ispitanika s dijagnozom raka pluća iz arhiva Kliničkog zavoda za patologiju i sudsku medicinu Kliničkog bolničkog centra Osijek u razdoblju od jedne godine (1. svibanj 2016. - 30. travanj 2017.) te su izdvojeni ispitanici s dijagnozom raka pluća.

3.2. Materijali
Tijekom provođenja studije, iz arhiva Kliničkog zavoda za patologiju i sudsku medicinu izvađeni su bioptički materijali ispitanika s karcinomom pluća. Svaki je pacijent vođen pod šifrom broja biopsije tako da se nigdje ne spominje bolesnikovo ime. Obrada materijala na bilo koji način nije utjecala na dijagnozu i liječenje bolesnika, čiji se bioptički materijal koristio u studiji. Ispitanici čiji je bioptički materijal korišten, birani su po ključu karcinoma pluća u jednoj godini neovisno o dobi i spolu.

3.3. Metode
Iz formirane baze podataka pacijenata s karcinomom pluća, izdvojeni su bolesnici s rakom pluća malih i ne-malih stanica. Nakon toga, iz skupine raka pluća ne-malih stanica, izdvojeni su pacijenti s adenokarcinomom pluća, a u posebnu podskupinu svrstani su adenokarcinomi čija je dijagnoza potvrđena imunohistokemijskim metodama.

3.3.1. Imunohistokemija
Imunohistokemija je metoda koja predstavlja spoj imunologije i histologije te se koristi principom u kojem se protutijelo veže za ciljni antigen, a nakon tog vezanja protutijela slijedi očitavanje signala koji je rezultat obilježavanja protutijela kromogenima (10). Zahvaljujući
specifičnosti reakcije antigena i antitijela, imunohistokemijske metode su vrlo osjetljive, reproducibilne i jednostavne. Direktna je metoda jednostavnija od indirektnje jer lokalizira antigene uporabom specifičnog protutijela za taj antigen. Indirektna je metoda složenija jer sadrži primarna i sekundarna protutijela, ali je značajno jeftinija u rutinskoj dijagnostičkoj primjeni. Prvo se za antigen veže primarno protutijelo, koje nije obilježeno, a na njega se veže obilježeno, sekundarno protutijelo (11). Iz tih je razloga pronašla svoje mjesto u medicini, osobito patologiji, kao snažno dijagnostičko sredstvo. Osim u dijagnostici, imunohistokemija se koristi i u sferi znanstveno-istraživačkih radova. Pomoću principa imunohistokemije možemo lokalizirati specifične antigene u uzorcima. Imunohistokemija ne zamjenjuje histokemijske metode, već predstavlja pomoćno sredstvo kojim se proširuje izbor staničnih komponenata koje možemo dokazati (10).

3.3.2. Priprema uzoraka u imunohistokemiji

Imunohistokemiji prethodi priprema uzoraka koja uključuje: fiksaciju, dehidriranje i prosvjetljavanje, uklapanje, rezanje i bojenje.

Fiksacija je najvažniji korak tijekom obrade tkiva. Provodi se kako bi se izbjegla razgradnja tkiva enzimima ili bakterijama te za očuvanje samog fizičkog izgleda tkiva. Komadi tkiva brzo se i prikladno fiksiraju, koliko je moguće ranije, nakon vađenja iz tijela. Prije samog postupka fiksacije potrebno ih je usitniti radi lakšeg prodora fiksativa. Postupak fiksacije izvodi se tako što se tkivo uroni u otopinu tvari, fiksative (živin klorid, glutaraldehid, formalin...), koji djelujući na proteine u tkivu očuvaju molekularne i morfološke karakteristike. Kao fiksativ, najčešće se koristi formalin, odnosno njegova 10 %-tna otopina (12).

Uklapanje je postupak koji omogućuje rezanje preparata mikrotomom. Kao sredstvo za uklapanje, najčešće se koristi parafin te u nekim slučajevima plastične smole zbog određenih prednosti kao što su tanji rezovi. Određeni antigeni koje pokušavamo dokazati imunohistokemijskim metodama ne mogu podnijeti postupak fiksacije uklapanjem u parafin pa se tkivo samo smrзавa. Dva su pripremnih postupak koji prethode uklapanju: **dehidriranje i prosvjetljavanje**. Dehidriranje se provodi na način da se iz fiksiranih i ispranih komadića tkiva prvo uklanja voda. Postupak se sastoji od uzastopnog prenošenja tkiva u sve koncentriranije mješavine etanola i vode, krenuvši od manjih koncentracija (70 %-tni etanol)
3. Materijali i metode

ka većim koncentracijama (apsolutni etanol). Korak koji slijedi iza toga je zamjena etanola otapalom za sredstvo za uklapanje. Kada se parafin koristi kao sredstvo za uklapanje, etanol se zamjenjuje ksilolom. Kada se tkivo prožme otapalom, ono obično postane prozirno, u skladu s tim ovaj se postupak naziva prosvjetljavanje. Nakon toga se može staviti u otopljeni parafin u termostatu, na temperaturi od 58 do 60°C. Inkubiranjem dolazi do isparavanja otapala te se prostori u tkivu ispunjavaju parafinom. Kada se tkivo uklapa u plastične smole, prvi korak je dehidriranje u etanolu, zatim se prožme otapalom za plastiku te se uklopi u plastičnu masu koja zamijeni otapalo i stvrdne se na sobnoj temperaturi (12).

Rezanje se vrši tako da dobivene blokove tkiva režemo rotacijskim ili kliznim mikrotomom pomoću čelične ili staklene oštrice na rezove debljine od 1 do 10µm. Izrezani preparat se pomoću kista prenese na površinu tople vode te se izravna i nakon toga, izrezani, ravni uzorci stavljaju se na predmetno staklo. Kod smrznutih se tkiva za dobivanje rezova koristi kriostat kod kojega je nedostatak loša morfologija, teži proces rezanja, slaba rezolucija na većem povećanju te su teži uvjeti spremanja i čuvanja (12).

Razotkrivanje antigena omogućuje reakciju protutijela s antigenima na fiksiranom tkivu. Enzimatska digestija i razotkrivanje epitopa toplinom, najčešće su metode koje se koriste za razotkrivanje antigena. Enzimatskom digestijom skida se parafin, rehidirira tkivo te se ispire u vodi. Nakon što se tkivo ispralo u vodi, uroni se u otopinu proteaznog pufera i enzima te se inkubira na sobnoj temperaturi ili 37°C. Najčešće korišteni enzimi su tripsin i pepsin, a sama se reakcija dodatno može ubrzati koenzimom (kalcijskim kloridom). Pri razotkrivanju antigena toplinom koristi se mikrovalna pećnica, autoklav te iskuhavanje stakalca pod visokim tlakom. Povećana temperatura uzrokuje pucanje veza između samih proteina, iako točan mehanizam nije u potpunosti razjašnjen (10).
Imunodetekcija antigena slijedi nakon razotkrivanja, pri čemu se antićeni imunohistokemijski označuju kako bi ih se moglo detektirati. Metode kojima se mogu detektirati su direktna metoda, indirektna metoda, PAP metoda i neke druge koje se rijetko koriste (10).

3.3.3. Korišteni biljezi u imunohistokemiji

Tumorski biljezi ili tumorski markeri predstavljaju različite proteine, enzime, hormone, receptore te druge stanične proizvode koji se pojačano stvaraju u malignim stanicama. Najčešće su normalni sastojci stanica. Maligne stanicu raste brzo i progresivno te se na taj način značajno povisuje količina tumorskih biljega, kako lokalno u samom tkivu tumora tako i u cirkulaciji. Tumorski biljezi se u praksi najviše koriste pri procjeni uspješnosti terapije za pojedine tumore te pri ranom otkrivanju recidiva. Specifični biljezi često predstavljaju ciljna mjesta djelovanja pojedinih lijekova (13).

Tijekom provođenja ovog istraživanja u kojem je razlučen adenokarcinom od ostalih karcinoma pluća ne-malih stanica, korišteni su sljedeći biljezi: p63, CK 5/6, TTF-1, CK7. Ekspresija biljega p63 i CK 5/6 upućuje na planocelularni imunofenotip, dok pozitivnost TTF-1 i CK7 upućuje na adenokarcinomski imunofenotip raka pluća.

p63 je član p53 obitelji tumor supresorskih gena kojeg tipično pronalazimo na stanicama planocelularnog karcinoma pluća, ali se još može javiti i na stanicama drugih tumora (planocelularni karcinom jednjaka, kože, glave i vrata rodnice) (14, 15).

CK 5/6, odnosno citokeratini 5 i 6 su strukturni proteini epitelnih stanic koje normalno nalazimo u određenim stanicama, ali su povezani i s planocelularnim karcinomom pluća te ih pronalazimo kod karcinoma dojke i mezotelioma (14).

TTF-1, odnosno tiroidni transkripcijski faktor 1 je protein koji tijekom embriogeneze sudjeluje u regulaciji ekspresije gena u štitnjači, međumozgu i plućima. Osim u normalnim stanicama, možemo ga pronaći i u stanicama adenokarcinoma pluća. TTF-1 je visoko specifičan marker za primarne adenokarcinome pluća i treba biti uključen u panel antitijela za diferencijalnu dijagnozu između primarnih i metastatskih adenokarcinoma pluća (15, 16).

CK7, citokeratin 7 je strukturni protein kojega osim u zdravim stanicama, pronalazimo još i u stanicama adenokarcinoma pluća te u hepatocelularnom karcinomu i karcinomu prostate (17).
Postupak imunohistokemijskog bojenja proveden je na aparatu Ventana BenchMark Ultra. Antitijela koja su korištena za imunohistokemijsko bojenje:
1. Anti-p63 antitijelo - Zečje poliklonalno antitijelo (18)
2. Anti-CK 5/6 antitijela - Mišja monoklonalna antitijela (19)
3. Anti-TTF1 antitijelo - Zečje monoklonalno antitijelo (20)

3.4. Statističke metode

Korištene su metode deskriptivne statistike. Kategorijski su podaci analizirani Fisherovim egzaktnim testom. Numerički su podaci prikazani medijanom i interkvartilnim rasponom, dok je za usporedbe između grupa korišten Kruskal-Wallis test. Razina značajnosti je postavljena na $a=0.05$. Za statističku analizu korišten statistički program SPSS (inačica 16.0, SPSS Inc., Chicago, IL, SAD).
4. REZULTATI

Broj biopsija u razdoblju koje je promatrano (1. 5. 2016. - 30. 4. 2017.) je 16498, od čega je 61 biopsija pluća koje su napravljene zbog sumnje na tumor. Zbog neodgovarajućih uzoraka, njih 32 nije uzeto u obzir u koja su uključena i 2 karcinoma pluća malih stanica (SCLC) jer nisu bila predmet istraživanja. Istraživanje je provedeno na 29 pacijenata. U skupini od 29 pacijenata, bio je 21 muškarac i 8 žena. Odnos muškaraca i žena je 2,6:1. (Tablica 1.).

Tablica 1. Spolna raspodjela ispitanika

<table>
<thead>
<tr>
<th>Spol</th>
<th>Broj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muškarci</td>
<td>21</td>
</tr>
<tr>
<td>Žene</td>
<td>8</td>
</tr>
<tr>
<td>Ukupno</td>
<td>29</td>
</tr>
</tbody>
</table>

Dob ispitanika kretala se od 49 do 81 godine (Tablica 2.).

Tablica 2. Medijan i raspon godina ispitanika

<table>
<thead>
<tr>
<th></th>
<th>Muškarci</th>
<th>Žene</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medijan</td>
<td>63</td>
<td>60</td>
<td>63</td>
</tr>
<tr>
<td>Raspon</td>
<td>od 49 do 81</td>
<td>od 52 do 79</td>
<td>od 49 do 81</td>
</tr>
</tbody>
</table>

Prema distribuciji s obzirom na tip NSCLC-a, adenokarcinom je najzastupljeniji kod oba spola (Tablica 3.).
4. Rezultati

Tablica 3. Distribucija s obzirom na podjelu NSCLC-a

<table>
<thead>
<tr>
<th>Podjela NSCLC-a</th>
<th>Broj ispitanika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planocelularni</td>
<td>10</td>
</tr>
<tr>
<td>Adenokarcinom</td>
<td>17</td>
</tr>
<tr>
<td>Velikostanični</td>
<td>2</td>
</tr>
<tr>
<td>Ukupno</td>
<td>29</td>
</tr>
</tbody>
</table>

Kod podjele NSCLC-a s obzirom na spol ispitanika, nije uočena statistički značajna razlika (Tablica 4.).

Tablica 4. Podjela NSCLC-a s obzirom na spol ispitanika

<table>
<thead>
<tr>
<th>Spol</th>
<th>Podjela NSCLC</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planocelularni</td>
<td>Adenokarcinom</td>
</tr>
<tr>
<td>Muškarac</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Žena</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Ukupno</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

Iz tablice 5. može se iščitati kod kolikog je broja pacijenata radena imunohistokemija.
4. Rezultati

Tablica 5. Dijagnostika karcinoma imunohistokemijom

<table>
<thead>
<tr>
<th>Imunohistokemija</th>
<th>Broj ispitanika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radena je</td>
<td>19</td>
</tr>
<tr>
<td>Nije rađena</td>
<td>10</td>
</tr>
<tr>
<td>Ukupno</td>
<td>29</td>
</tr>
</tbody>
</table>

Nije uočena statistički značajna razlika kod imunohistokemije s obzirom na podjelu NSCLC-a, što je detaljno prikazano tablicom 6.

Tablica 6. Imunohistokemija s obzirom na podjelu NSCLC-a

<table>
<thead>
<tr>
<th>Podjela NSCLC-a</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planocelularni</td>
<td></td>
</tr>
<tr>
<td>Adenokarcinom</td>
<td></td>
</tr>
<tr>
<td>Velikostanični</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imunohistokemija</th>
<th>Podjela NSCLC-a</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radena je</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Nije rađena</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Ukupno</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

*Fisherov egzaktni test

Za dob ispitanika s obzirom na podjelu NSCLC-a nije uočena statistički značajna razlika u pojavnosti (Kruskal-Wallis test, p=0,060).
4. Rezultati

Tablica 7. Testiranje razlike s obzirom na podjelu NSCLC-a

<table>
<thead>
<tr>
<th>Dob</th>
<th>Medijan (interkvartilni raspon)</th>
<th>Velikostanični</th>
<th>Ukupno</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planocelularni</td>
<td>Adenokarcinom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dob</td>
<td>69,00 (62,25 - 74,25)</td>
<td>60,00 (53,00 - 64,50)</td>
<td>70,50 (60,00 - ..)</td>
<td>63,00 (58,50 -70,50)</td>
</tr>
</tbody>
</table>

*Kruskal-Wallis

5. RASPRAVA

Svrha ovog istraživanja bila je utvrditi učestalost svih tipova karcinoma pluća u jednoj godini (1. 5. 2016. - 30. 4. 2017.), utvrditi učestalost osnovnih podtipova raka pluća u istraživanom materijalu, utvrditi učestalost adenokarcinoma pluća u podskupini karcinoma pluća ne-malih stanica te utvrditi učestalost adenokarcinoma pluća potvrđenih imunohistokemijom.

Istraživanje je obuhvatio 61 bolesnika, pri čemu je njih 32 isključeno zbog neodgovarajućih dijagnoza (upale, hamartomi, metastaze), među koje spadaju i 2 karcinoma pluća malih stanica, ali oni nisu bili predmet istraživanja te je ono provedeno na 29 ispitanika sa karcinomom pluća ne-malih stanica. U skupini izdvojenih i istraživanih bolesnika nalazio se veći broj muškaraca, njih 21 te 8 žena. Odnos muškaraca i žena je 2,6:1. Ta je razlika uočena i u literaturi, s obzirom na to da je karcinom pluća češći kod muškaraca u odnosu na žene. U Hrvatskoj je 2008. rak pluća u muškaraca bio prvi po incidenciji (18 % svih zloćudnih bolesti) i mortalitetu, a u žena četvrti po incidenciji (6 % svih zloćudnih bolesti), a treći po mortalitetu (5). Prema podacima Registra za rak, u Hrvatskoj je 2013. godine dijagnosticirano 2753 novooboljelih od raka pluća, od čega 2031 muškarac i 722 žene (22).

Središnja vrijednost (medijan) dobi bolesnika bila je 63 godine s rasponom od 49 do 81 godine. Ovi rezultati poklapaju se s istraživanjem koje su proveli Foucault i suradnici 2013. godine u Francuskoj, gdje navode da je srednja dob pacijenata bila 62,6 godina (23). Raspon godina muških bolesnika kretao se od 49 do 81 godine, a ženskih bolesnica od 52 do 79 godina života. Iz tih je rezultata uočljivo kako se karcinom pluća ne-malih stanica javlja u ranijoj životnoj dobi kod muškaraca u odnosu na žene (24). Ti su rezultati suglasni s podacima iz literature o najčešćoj pojavi karcinoma pluća ne-malih stanica u dobi između 40. i 70. godine života (1).

Prema podacima literature vidljivo je kako se planocelularni te adenokarcinom pluća, s obzirom na dob, javljaju od 65. godine života (25, 26). Ovaj podatak slaže se s dobivenim rezultatima istraživanja u kojemu se planocelularni karcinom pluća ne-malih stanica javlja u dobi od 62,3 do 74,3 godine. Kod bolesnika koji su bili uključeni u ovo istraživanje, adenokarcinom se javlja u dobi od 53 do 65 godina, što se ne poklapa s literaturnim navodima za dob. Razlog najvjerojatnije leži u malom uzorku ispitivanih bolesnika. Literatura dalje navodi kako se velikostanični karcinom pluća ne-malih stanica najčešće javlja u dobi od
5. Rasprava

60 godina (27). Ovaj navod poklapa se s rezultatima provedenog istraživanja u kojemu je dob bolesnika također iznosila 60 godina. No, iako se rezultati poklapaju, ne može se donijeti presudan zaključak s obzirom na mali uzorak (njih 2) ispitivanih bolesnika.

Od 29 bolesnika, njih 17 imalo je adenokarcinom. Ovi rezultati potvrđuju kako je adenokarcinom danas najčešći tip karcinoma pluća ne-malih stanica (1). Drugi po pojavnosti bio je planocelularni od kojega je bolevalo 10 bolesnika, dok je velikostanični bio najrjeđe zastupljen, sa samo 2 bolesnika. Rezultati dobiveni istraživanjem odgovaraju literaturnom navodu koji kaže kako je adenokarcinom prvi po zastupljenosti, drugi po pojavnosti je planocelularni, a najrjeđi je velikostanični karcinom pluća ne-malih stanica (28).

Podjela karcinoma pluća ne-malih stanica s obzirom na spol dala je rezultate u kojima se vidi kako je pojavnost adenokarcinoma češća kod žena (5/8) u odnosu na muškarce (4/7). Ti se rezultati podudaraju s publiciranim nalazima pojavnosti adenokarcinoma (1). Adenokarcinom je najčešći tip karcinoma pluća ne-malih stanica kod žena koje puše i kod onih koje ne puše te je u stalnom porastu, a kod muškaraca je zabilježena stagnacija (29, 30). Planocelularni karcinom javlja se s većom učestalosti kod muškaraca (8/21) u odnosu na žene (1/4). Ove navode potvrđuje i literatura u kojoj se navodi kako je planocelularni tip karcinoma pluća ne-malih stanica češći kod muškaraca u odnosu na žene (31). Velikostanični karcinom pluća ne-malih stanica češći je kod muškaraca nego kod žena i u prošlosti se javljao puno češće nego danas, zato što su se pojedini adenokarcinomi i planocelularni karcinomi pluća ne-malih stanica svrstavali u velikostanične. Ta incidencija je u opadanju zato što se primjenjuju novije i modernije metode detekcije koje razlikuju adenokarcinom te planocelularni karcinom od velikostaničnog karcinoma pluća ne-malih stanica (32). Istraživanjem koje je provedeno na 29 bolesnika, velikostanični karcinom pluća ne-malih stanica bio je češći kod žena u odnosu na muškarce, no ovaj podatak ne može nam dati točan uvid u incidenciju zbog malog uzorka. Točnije, u istraživanje su uključena samo dva bolesnika s velikostaničnim karcinomom pluća ne-malih stanica, jedan muškarac i jedna žena.

Imunohistokemija je od velike pomoći i igra značajnu ulogu pri dijagnosticiranju morfološki nedovoljno diferenciranih karcinoma. Torlakovic i suradnici ističu iskoristivost i inkorporiranost imunohistokemije u rutinskoj dijagnostici patološke anatomije (33, 34). Imunohistokemijska dijagnostička obrada patohistoloških uzoraka provedena je u 19 od 29 pacijenata, što čini skoro duplo više uzoraka. Kod preostalih 10 pacijenata imunohistokemija nije rađena jer je pregledom patohistoloških preparata na stakalcima obojenim rutinskim
5. Rasprava

hematoksilinskim i eozinskim (HE) bojenjem procijenjeno kako je karcinom dovoljno diferenciran da se može bez poteškoća prepoznati je li riječ o adenokarcinomu ili nekom drugom karcinomu iz skupine NSCLC-a. S obzirom na dobivene rezultate, imunohistokemija je postala dio rutinske dijagnostike karcinoma pluća ne-malih stanica KBC-a Osijek, što se slaže s literaturnim navodima o njezinoj sve učestalijoj primjeni (33, 34).

Posljednjih godina postalo je važno dobro izdiferencirati karcinome skupine NSCLC-a zbog mogućnosti primjene novih lijekova, posebice tirozininkoznih inhibitora. Zbog toga je na važnosti dobila i imunohistokemijska obrada uzoraka, posebice slabije diferenciranih karcinoma koji se ni pažljivim pregledom na rutinski HE obojenim preparatima ne uspijevaju svrstiti u podskupine adenokarcinom, planocelularni karcinom ili velikostanični karcinom. U većini slučajeva, izražaj biljega p63 i CK 5/6 upućuje na planocelularni tip karcinoma pluća, dok pozitivna ekspresija TTF-1 i CK7 upućuje na adenokarcinom (1, 35).

Upravo zbog toga je i promatrano razdoblje od 1. 5. 2016. do 30. 4. 2017. jer se tada rutinski započelo s molekularnom dijagnostikom EGFR i ALK mutacija na adenokarcinomima pluća u Laboratoriju za molekulnu dijagnostiku Kliničkog zavoda za patologiju i sudsku medicinu KBC-a Osijek, što je temelj primjene novih oblika terapije karcinoma pluća.

Terapiju karcinoma pluća možemo podijeliti na kurativnu i palijativnu terapiju (8). Kurativna terapija koristi se u vidu izlječenja, a ako izlječenje nije moguće, koristi se palijativna terapija kako bi se smanjili simptomi te olakšale tegobe pacijenta. Uspješnost terapije karcinoma pluća ponajprije ovisi o njegovom stadiju i proširenosti. Ukoliko se prekasno dijagnosticira, uvelike je smanjena vjerojatnost izlječenja. Metode koje se koriste tijekom liječenja su radioterapija, kemoterapija, radiokemoterapija te operativno liječenje. Problem kod operativnog liječenja je taj što karcinom pluća raste infiltrativno te u poodmaklim fazama onemogućuje kompletno odstranjenje. Stoga se operativno odstranjene koristi u početnim fazama bolesti.

Nedostatci se operativnog liječenja nadoknađuju kombiniranjem s radioterapijom i/ili kemoterapijom. Kemoterapija podrazumijeva primjenu lijekova koji djeluju na stanice raka tako što ih uništavaju i inhibiraju njihovu proliferaciju vežući se na receptore koji se nalaze na površini karcinomskih stanica. Otkriće i primjena imunohistokemijskih metoda omogućila je i uvelike olakšala provođenje ciljne terapije „pametnim lijekovima“ (6).
6. ZAKLJUČAK

Na temelju provedenog istraživanja i dobivenih rezultata mogu se izvesti sljedeći zaključci:

1. U jednoj godini obavljeno je 16 498 biopsija, od čega je 61 (0,37 %) biopsija pluća.
2. Utvrđeno je 29 karcinoma pluća ne-malih stanica (93,5 %) i 2 karcinoma pluća malih stanica (6,5 %).
3. Učestalost adenokarcinoma u odnosu na ostale tipove karcinoma pluća ne-malih stanica iznosila je 58,6 %.
4. Od 17 adenokarcinoma u promatranom razdoblju, njih 10 (58,8 %) potvrđeno je imunohistokemijski, dok je 7 (41,2 %) potvrđeno histološki.
7. SAŽETAK

Cilj istraživanja: Utvrditi učestalost svih tipova karcinoma pluća u jednogodišnjem bioptičkom materijalu Kliničkog zavoda za patologiju i sudsku medicinu KBC-a Osijek, utvrditi učestalost osnovnih podtipova raka pluća u istraživanom materijalu, utvrditi učestalost primjene imunohistokemijskih metoda u patohistološkoj dijagnostici adenokarcinoma pluća.

Nacrt studije: Retrospektivna studija.

Materijali i metode: U istraživanje su uključeni ispitanici čiji su podaci uzeti iz arhiva Kliničkog zavoda za patologiju i sudsku medicinu KBC-a Osijek. Izdvojeni su bolesnici s rakom pluća malih i ne-malih stanica. Nakon toga, iz skupine raka pluća ne-malih stanica izdvojeni su pacijenti s adenokarcinomom pluća, a u posebnu podskupinu svrstani su adenokarcinomi čija je diagnoza potvrđena imunohistokemijom.

Rezultati: U istraživanje je uključeno 29 karcinoma pluća ne-malih stanica. Među oboljelima bio je 21 muškarac i 8 žena. Prosječna dob bolesnika iznosila je 63,8 godina. Od 29 NSCLC-a bilo je 17 adenokarcinoma, 10 planocelularnih i 2 velikostanična karcinoma. U ovom istraživanju adenokarcinom je najčešći tip NSCLC-a u oba spola. Imunohistokemija je radena kod 19 bolesnika, dok je u njih 10 dijagnoza postavljena na rutinskim patohistološkim preparatima, bez uporabe imunohistokemije.

Zaključak: U ovom je istraživanju potvrđeno kako je u istraživanoj populaciji adenokarcinom najčešći tip NSCLC-a, čija je pojavnost bila češća kod žena u odnosu na muškarce. Također je utvrđeno kako je imunohistokemijska potvrda dijagnoze provedena u 65,5 % bolesnika. Radi statističke signifikantnosti, nužno bi bilo provesti istraživanje na većem uzorku.

Ključne riječi: Adenokarcinom; imunohistokemija; karcinom ne-malih stanica pluća; tumorski biljezi.

23
8. SUMMARY

Immunohistochemical methods in the differentiation of non-small cell lung cancer

Objectives: The aim of this study is to determine the rate of all types of lung carcinoma in one year biopsy material of the Department of Pathology and Forensic Medicine of the University Hospital Centre Osijek; to determine the rate of basic types of lung carcinoma in the researched material; to determine the rate of confirmed lung adenocarcinoma by immunohistological methods of pathohistological diagnostics.

Study design: Retrospective study.

Materials and Methods: This study included patients whose data were taken from the archive of the Department of Pathology and Forensic Medicine of the University Hospital Centre Osijek.

Results: 29 non-small cell lung carcinomas are included in the study, 21 of which are men and 8 women. Average age of patients was 63.8 years. Out of 29 NSCLC, 17 were adenocarcinomas, 10 were planocellular and 2 were macrocellular carcinomas. In this study adenocarcinoma is the most common type of NSCLC in both genders. Immunohistochemistry was made in 19 patients, and 10 patients were diagnosed histologically, with no use of immunohistochemistry.

Conclusion: In this study, it was proven that adenocarcinoma is the most common type of NSCLC, which can more often be found in women than men. Immunohistochemistry was performed in 65.5% of cases. Due to statistical significance, this study should be carried out on a larger sample.

Key words: adenocarcinoma; immunohistochemistry; non-Small cell lung cancer; tumour markers.
9. LITERATURA

15. Sethi S, Geng L, Shidham VB, Archuletta P, Bandyopadhyay S, Feng J, i sur. Dual color multiplex TTF-1 + Napsin A and p63 + CK5 immunostaining for subcategorizing of

10. ŽIVOTOPIS

Klara Alduk, studentica 3. godine preddiplomskog studija Medicinsko laboratorijske dijagnostike na Medicinskom fakultetu Osijek.

Osobni podatci:

Adresa: Matije Gupca 39, Privlaka, 32251.

E-mail: klaraalduk@gmail.com.

Telefon: 099 570 33 50.

Obrazovanje:

Osobne vještine:

Materinski jezik: hrvatski.

Strani jezici: engleski.

Godinama se aktivno bavim sportom, plesom i pilatesom.